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The high-Reynolds-number behavior of the canonical incompressible turbulent channel
flow is investigated through large-scale direct numerical simulation (DNS). A Reynolds
number is achieved (Reτ = h/δv ≈ 4000, where h is the channel half-height, and δv is
the viscous length scale) at which theory predicts the onset of phenomena typical of the
asymptotic Reynolds number regime, namely a sensible layer with logarithmic variation of
the mean velocity profile, and Kolmogorov scaling of the velocity spectra. Although higher
Reynolds numbers can be achieved in experiments, the main advantage of the present
DNS study is access to the full three-dimensional flow field. Consistent with refined
overlap arguments (Afzal & Yajnik 1973; Jiménez & Moser 2007), our results suggest that
the mean velocity profile never achieves a truly logarithmic profile, and the logarithmic
diagnostic function instead exhibits a linear variation in the outer layer whose slope
decreases with the Reynolds number. The extrapolated value of the von Karman constant
is k ≈ 0.41. A near logarithmic layer is observed in the spanwise velocity variance, as
predicted by Townsend’s attached eddy hypothesis, whereas the streamwise variance
seems to exhibit a plateau, perhaps being still affected by low-Reynolds-number effects.
Comparison with previous DNS data at lower Reynolds number suggests enhancement
of the imprinting effect of outer-layer eddies onto the near-wall region. This mechanisms
is associated with excess turbulence kinetic energy production in the outer layer, and
it reflects in flow visualizations and in the streamwise velocity spectra, which exhibit
sharp peaks in the outer layer. Associated with the outer energy production site, we find
evidence of a Kolmogorov-like inertial range, limited to the spanwise spectral density of
u, whereas power laws with different exponents are found for the other spectra. Finally,
arguments are given to explain the ‘odd’ scaling of the streamwise velocity variances,
based on the analysis of the kinetic energy production term.

1. Introduction

The study of turbulent flows over solid surfaces has a great importance in engineering
fluid dynamics, but it is also a subject of great intrinsic academic interest. According to
the common notion, turbulence in the near-wall layer is approximately universal, when
quantities are scaled in wall units (namely, the friction velocity uτ =

√

τw/ρ, and the
viscous length-scale δv = ν/uτ ). On the other hand, far from the wall, the correct length
scale is the thickness of the wall layer (in channels, the half-width h), whereas the relevant
velocity scale is still uτ . Conventionally (Pope 2000), the inner layer is assumed to end
at y/h ≈ 0.1 and the outer layer to start at y+ ≈ 50. Matching the mean velocity profile
between in the overlap region between the inner and the outer layer (if any) yields the
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logarithmic law, which then only emerges if the friction Reynolds number, Reτ = h/δv
is of the order of thousands, or so. The universal nature of wall turbulence has been put
into question by a series of studies which have highlighted a series of violations of the
universal structure, the most evident being perhaps the variation of the near-wall peak
of the streamwise turbulence intensity, whose amplitude is found to grow logarithmically
with the friction Reynolds number (Klewicki & Falco 1990; DeGraaff & Eaton 2000;
Marusic & Kunkel 2010). This behavior has been linked to the influence of outer-scaled
eddies, which mainly contain wall-parallel, inactive motions (Kim & Adrian 1999; Guala
et al. 2006; Hutchins & Marusic 2007). The imprint of the outer-layer eddies becomes
more evident as Reτ is increased, eventually leading to violation of the pure wall scaling.
Is is generally believed that, to be able to probe high-Reynolds-number effects, friction
Reynolds numbers of the order of a few thousands should be explored, the consensus
threshold to observe an order-of-magnitude logarithmic variation of the mean velocity
being Reτ ≈ 4000 (Jiménez & Moser 2007; Hutchins & Marusic 2007).

Studying wall-bounded turbulent flows (boundary layers, channels, pipes) in the moderate-
to-high Reynolds-number regime is then a challenging task both for experiments, because
of the stringent requirements on the velocity probe size (Hultmark et al. 2010), and even
more for DNS. The latter offer the advantage of easier access to the full three-dimensional
flow fields, but it is seriously hampered by the need of huge computational resources.
Given the approximate proportionality between the Kolmogorov scale and the viscous
length scale at the wall (Pope 2000), it is found that the energetically relevant scales
of motion are resolved (at least in pseudo-spectral calculations) provided the spacings
in the wall-parallel directions are ∆x+ ≈ 10, ∆z+ ≈ 6 (the superscript + is hereafter
used to denote quantities made nondimensional with uτ and δv). Further, to keep the
resolution constant in terms of Kolmogorov units, the number of collocation points in
the wall-normal direction shall grow as Re3/4τ (Pope 2000), hence making up for a total

number of points growing as Re11/4τ . This restriction makes the numerical simulation of
wall-bounded flows at high Reynolds number (in the operational sense given above) quite
challenging. To date, the highest Reynolds number attained in incompressible boundary
layer DNS is Reτ ≈ 2000 (Sillero et al. 2013), for channel flows Reτ ≈ 2000 (Hoyas &
Jiménez 2006), and for pipe flows Reτ ≈ 1100 (Wu & Moin 2008). Reτ ≈ 4000 was re-
cently achieved in a compressible boundary layer DNS, by the present authors (Pirozzoli
& Bernardini 2013).

In this paper we present novel data from incompressible channel flow DNS, which ex-
tends the Reynolds number envelope of numerical channels to Reτ ≈ 4000, thus meeting
the constraints for the flow to be regarded at least representative of the high-Reynolds-
number regime. The numerical methodology used for the purpose is explained in §2, and
the flow statistics are presented in §3, which includes a discussion of the results. Final
comments are given in §4.

2. Computational setup

We solve the Navier-Stokes equations for a divergence-free velocity field, by enforcing
a time-varying pressure gradient to maintain a constant mass flow rate. The equations
are discretized in an orthogonal coordinate system (x, y, z denote the streamwise, wall-
normal and spanwise directions) using staggered central second-order finite-difference
approximations, which guarantee that kinetic energy is globally conserved in the limit of
inviscid flow. Time advancement is achieved by a hybrid third-order low-storage Runge-
Kutta algorithm (Bernardini & Pirozzoli 2009) coupled with the second-order Crank-
Nicolson scheme, combined in the fractional-step procedure, whereby the convective and
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Flow case Line style Reb Reτ Nx Ny Nz ∆x+ ∆z+ Tuτ/h

CH1 Dashed 20063 550 1024 256 512 10.0 6.7 36.3
CH2 Dash-dot 39600 999 2048 384 1024 9.2 6.1 26.9
CH3 Dash-dot-dot 87067 2022 4096 768 2048 9.3 6.2 14.9
CH4 Solid 191333 4079 8192 1024 4096 9.4 6.2 8.54

Table 1: List of parameters for turbulent channel flow cases. Reb = 2hub/ν is the bulk
Reynolds number, and Reτ = huτ/ν is the friction Reynolds number. Nx, Ny, Nz are
the number of grid points in the streamwise, wall-normal, and spanwise directions. ∆x+,
∆z+ are the grid spacings in the wall-parallel direction, in wall units. The simulation
time T is given in terms of eddy turnover times h/uτ .

diffusive terms are treated explicitly and implicitly, respectively. The Poisson equation
for the pressure field, stemming from the incompressibility condition, is efficiently solved
using a direct solver based on Fourier transform methods, as described by Kim & Moin
(1985). A full description of the numerical method is provided in Orlandi (2000).

It is worth noting that the computations are performed in a convective reference frame
for which the bulk velocity is zero, i.e. in which the net streamwise mass flux is zero.
In addition to allowing a larger computational time-step, this expedient minimizes the
dispersion errors associated with the finite-difference discretization, leading to results
that are much closer to those of spectral methods (Bernardini et al. 2013).

The DNS have been carried out in a (Lx×Ly×Lz) = (6πh×2h×2πh) computational
box, which is expected to be sufficiently long to accommodate the largest outer-layer flow
structures based on previous DNS results at lower Reynolds number (Flores & Jimenez
2010). The mesh spacing in the wall-parallel directions has been kept (nearly) the same
in wall units for all simulations. A cosine stretching function (y(ξ) = − cos(π(ξ + 1)/2),
ξ = [−1; 1]) has been used to cluster points in the wall-normal direction, in such a way
that the first point off the wall lies at ∆y+w ≈ 0.01, and the maximum spacing in terms
of local Kolmogorov units is (∆y/η)max ≈ 1.84, for all flow cases, where η = (ν3/ε)1/4,
ε = 2νs′ijs

′

ij . Furthermore, since η+w ≈ 1.5, the resolution in the wall-parallel directions
is ∆x/η . 6.5, ∆z/η . 4.5 throughout. Details on the computational mesh and on the
flow parameters for the DNS are provided in table 1.

The simulations have been initiated with a laminar parabolic Poiseuille velocity profile,
with maximum velocity up at the centerline, and bulk velocity ub = 2/3up. After an
initial transient, the pressure gradient starts to fluctuate about a nearly constant value,
at the end of which spatial averages of the instantaneous fields in wall-parallel planes are
taken at time intervals of ∆t = h/up. The time window used for averaging, reported in
table 1 in terms of the turnover periods for eddies of size h and typical velocity uτ , is
comparable to that used in previous studies (Hoyas & Jiménez 2006). The time history
of the streamwise velocity variance at y+ = 15 (averaged in the wall-parallel plane) is
shown in figure 1. Note that, for the sake of comparison among the flow cases, the same
time window is used, with an arbitrary time origin. The figure shows that the space
averages oscillate in time with excursions of a few percent, at most, without significant
drift, which suggests that time stationarity is achieved in all computations.
The adequacy of the mesh used for the DNS has been verified through a grid sen-
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Figure 1: Time evolution of streamwise velocity fluctuations at y+ = 15 averaged in the
wall-parallel plane, in inner units. The time origin is arbitrary. See table 1 for line legend.
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Figure 2: Grid sensitivity study for the CH1 flow case: distribution of (a) velocity
variances (i = 1, circles; i = 2, diamonds; i = 3, squares) and (b) vorticity vari-
ances (i = 1, circles; i = 2, diamonds; i = 3, squares). Solid lines: baseline resolution
(∆x+ = 10.1,∆z+ = 6.7); dashed lines: doubled resolution (∆x+ = 5.1,∆z+ = 3.4);
dash-dotted line: quadruple resolution (∆x+ = 2.5,∆z+ = 1.7); dots: long domain
(Lx = 12πh). Symbols indicate data from pseudo-spectral DNS at Reτ = 550 (del Álamo
& Jiménez 2003).

sitivity study carried out at the lowest Reynolds number (CH1 flow case), for reasons
of computational feasibility. First, the influence of mesh resolution was established by
successively halving the spacing in both wall-parallel directions. The results of the study
are shown in figure 2 for the velocity variances (a) and the vorticity variances (b), and
compared with reference DNS data (Hoyas & Jiménez 2006), which were obtained with
a pseudo-spectral code. Convergence of the flow statistics is observed on the two finer
meshes, whose results are very close to the pseudo-spectral data. For the baseline mesh,
the observed scatter is small for the velocity fluctuations (less than 1% in the peak vari-
ance), and somewhat larger for the vorticity variances (O(3%) at most), consistent with
the notion that the smallest flow scales are most affected by mesh resolution effects, and
possibly by the accuracy of the flow solver (Bernardini et al. 2013). The mean velocity
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Figure 3: Effect of computational domain length on streamwise spectral densities at
y/h = 0.3 for flow case CH1. Square symbols: Lx = 6πh; circles : Lx = 12πh. (a) spectra
of u; (b) spectra of w.

profiles (not shown) exhibit scatter among the various curves by no more than 0.1%.
Overall, we believe that these findings qualify second-order finite differences for DNS of
wall-bounded turbulence.

The effect of the computational box size has also been addressed, by performing a
DNS with the same spatial resolution as the CH1 flow case, on a computational box
with doubled length (Lx = 12πh). The velocity and vorticity statistics, shown in figure 2
with dots, do not highlight any visible difference with the baseline CH1 data (indeed, the
curves are indistinguishable in the selected representation). A comparison of the velocity
spectra taken in the outer layer at y/h = 0.3 is provided in figure 3. Even though some
energy is present at the longest resolved scales of motion, this is still well represented
on the baseline mesh, as indicated by the near coincidence of the spectra on the two
domains. The results of the grid-sensitivity study here carried out for Reτ = 550 can
be extrapolated to higher Reynolds numbers with some caution, on the grounds that:
i) the near-wall turbulence scales in wall units, hence keeping the same grid resolution
in wall units is likely to preserve the quality of the results in this region; ii) the size
of the outer-layer eddies scales on h, hence the size of the computational box is kept
the same for all DNS. Although the two assumptions may be criticised, we believe that
they are reasonably accurate for the present study, in which the Reynolds number varies
over less than a decade. As a final check, the mean velocity profiles and the velocity
variances are compared in figure 4 to the reference DNS data of Hoyas & Jiménez (2006)
at Reτ = 2003, which shows a similar level of error as at lower Reynolds number, granted
the validity of the pseudo-spectral data.

3. Results

3.1. Velocity statistics

The mean streamwise velocity profiles for the CH1-4 simulations are shown in Fig. 5(a),
together with recent experimental data (Schultz & Flack 2013), at Reynolds numbers
very close to those of the CH2-4 simulations. Figure 5 highlights the onset of a layer
with nearly logarithmic velocity variation, whose extent visually increases with Reτ , and
excellent agreement with experiments. Fitting the CH4 data with a logarithmic velocity
distribution u+ = 1/k log y+ + C yields k ≈ 0.386, C ≈ 4.30, which are not too far, but
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Figure 4: Comparison with pseudo-spectral DNS at Reτ = 2000: distribution of (a) mean
velocity and (b) velocity variances. Solid lines: CH3 data; symbols: data from Hoyas &
Jiménez (2006).

still sensibly different than the set of constants k = 0.37, C = 3.7, quoted by Nagib &
Chauhan (2008) to be appropriate for channel flow.

More refined information on the behavior of the mean velocity profile can be gained
from inspection of the log-law diagnostic function

Ξ = y+ du+/dy+, (3.1)

shown in figure 5(b), whose constancy would imply the presence of a logarithmic layer
in the mean velocity profile. For reference, in figure 5(b) we also show the trends of the
defect-layer velocity profile derived by Townsend (1976, p. 147), under the assumption
of uniform eddy viscosity

u+

CL − u+ =
1

2
Rs(1− y/h)2, (3.2)

which implies

Ξ = Rsy/h(1− y/h), (3.3)

where uCL is the mean velocity at the channel centerline, and Rs is a constant to be
determined empirically. Specifically, the curves drawn in figure 5(b) were obtained using
Rs = 14.

The figure supports universality of the mean velocity in inner units up to y+ ≈ 100,
where the diagnostic function attains a minimum, and the presence of a maximum whose
position scales in outer units, at y/h ≈ 0.5. Between those two extreme regions the distri-
bution varies with the Reynolds number. While for Reτ . 1000 the diagnostic function
connects the inner-layer minimum with the outer-layer maximum monotonically, an in-
flection point forms for Reτ & 2000, which yields a region of linear variation extending
from y+ ≈ 600 to y/h ≈ 0.5, based on the present data. Approximate linear variation of
the diagnostic function was also observed by Jiménez & Moser (2007), who, also based
on the refined overlap arguments of Afzal & Yajnik (1973), proposed the following fit

Ξ =
1

k
+ α

y

h
+

β

Reτ
, (3.4)

where α, β are adjustable constants, and k is the equivalent of the von Kármán constant.
Based on the CH3 and CH4 DNS data (fitted in the range of linear variation of Ξ)
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Figure 5: Distribution of mean velocity (a) and log-law diagnostic function (b), as defined
in equation (3.1). In panel (a) the symbols indicate experimental data from Schultz &
Flack (2013), at Reτ = 1010 (squares), Reτ = 1956 (diamonds), Reτ = 4048 (circles). In
panel (b) the thick grey lines correspond to the generalized logarithmic profiles defined
in equation (3.4), for Reτ corresponding to the CH2-4 DNS; the thick dashed lines corre-
spond to the defect-layer profiles defined in equation (3.3), and the symbols correspond
to the DNS data of Hoyas & Jiménez (2006). See table 1 for nomenclature of the DNS
data.

we obtain k = 0.41, α = 1.15, β = 180, which are not too different from the set of
constants suggested by Jiménez & Moser (2007) (k = 0.40, α = 1, β = 150). The
resulting plots are shown as solid grey lines in figure 5(b), which highlights the accuracy
of the fit. The natural consequence of this behavior is that a genuine logarithmic layer is
never achieved at any finite Reynolds number. Of course, at this stage we can only rely
on the results of two DNS exhibiting inversion of the slope of the diagnostic function,
which is the symptom of the onset of such generalized logarithmic layer. In this respect,
available experiments are not very useful as they typically yield significant scatter in
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Figure 6: Comparison of skin friction coefficient with correlations and experiments.
Square symbols denote DNS from CH1-4 datasets, and circles experimental data (Schultz
& Flack 2013). The solid line indicates the friction law (3.5) with k = 0.386, C = 4.30;
the dashed line indicates the friction law (3.5) with k = 0.37, C = 3.7; the dot-dashed
line indicates Dean’s friction law (equation (3.6)).

the diagnostic function graph. Hence, DNS at higher Reynolds number would be most
welcome to confirm or refute our findings, and possibly determine more accurate values
of the log-law constants in (3.4).

To verify possible alternatives to the logarithmic law (and its generalizations), we have
also considered the diagnostic function for power-law behavior, namely y+/u+(du+/dy+),
whose constancy would imply power-law variation of the mean velocity. The resulting
distributions, not shown, have no significant plateau, which leads us to believe that the
logarithmic law is more robust than the power law, in agreement with most current
literature on the subject (Marusic et al. 2010).
Strictly related to the behavior of the mean velocity profile is the friction law. Early

studies proposed approximations based on either log-law representations of the whole
mean velocity profile, such as the classical Prandtl’s smooth flow formula (Durand 1935)

√

2

Cf
=

1

k
log

(

Reb

2

√

Cf

2

)

+ C −
1

k
, (3.5)

and power-law representations, such as Dean’s (Dean 1978)

Cf = 0.073Re−0.25
b , (3.6)

where Cf = 2τw/(ρu
2
b), Reb = 2hub/ν, and ub =

∫ 2h

0
u dy/(2h) is the bulk velocity. In

figure 6 we show the DNS data together with experimental data from Schultz & Flack
(2013), compared with the semi-empirical curve-fits. The DNS data are in overall good
agreement with experiments, albeit with systematic deviations of about 1%, which are
however within the range of experimental uncertainty (Schultz & Flack 2013). It is also
clear that Dean’s power-law fit rapidly loses accuracy at high Reynolds number, and
once a sensible log layer is formed, Prandtl’s formula is clearly superior. We have tested
Prandtl’s formula (as given in equation (3.5), with two different sets of log-law coefficients,
those suggested by Nagib & Chauhan (2008), and those derived from fitting the present
DNS data. While the discrepancies are minor at low Reynolds number (Reb . 2 · 105),
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Figure 7: Distribution of Reynolds stress components across the channel. Symbols open
symbols indicate experimental data from Schultz & Flack (2013), at Reτ = 1010
(squares), Reτ = 1956 (diamonds), Reτ = 4048 (circles). The solid symbols indicate
curve fits obtained with the formulation of Marusic & Kunkel (2010). The dashed diag-
onal line in (a) denotes the distribution given in equation (3.7) for B1 = 2.1 A1 = 1.26,
Reτ = 4000, and the dashed diagonal lines in (b) denote the distribution given in equa-
tion (3.8), with A3 = 0.44, B3 = 0.95. Refer to table 1 for nomenclature of the DNS
data.

where Nagib’s set of coefficients seems to be in closer agreement with the available data,
the reverse behavior is found at higher Reb, although no clear preference can be given to
any set of constants.

The second-order velocity fluctuations statistics are shown in inner coordinates in
figure 7, and their peaks are shown in figure 8 as a function of Reτ . The main impression
gained from the figure is that the trends observed at lower Reynolds number (Hoyas &
Jiménez 2006) continue to hold. Specifically, the longitudinal stress (a) shows evident
lack of universality in inner scaling, with fluctuation amplitudes which increase nearly
logarithmically with Reτ .

This behavior has been attributed (Metzger & Klewicki 2001; del Álamo et al. 2004;
Mathis et al. 2009) to the increasing influence of inactive outer-layer modes on the near-
wall dynamics. At this Reynolds number, no clear range with logarithmic variation of
the streamwise velocity variance is observed, as predicted by the attached eddy hypoth-
esis (Townsend 1961; Perry & Li 1990), and for which experiments in boundary layers
and pipes at much higher Reynolds number suggest (Marusic et al. 2013)

u′2/u2
τ ≈ B1 −A1 log(y/h), (3.7)

with A1 ≈ 1.26, which we have tentatively sketched in the figure. The spanwise velocity



10 M. Bernardini, S. Pirozzoli, P. Orlandi

1000 2000 3000 4000 5000
1

1.1

1.2

1.3

1.4

1.5

Reτ

u
′
2 p
k
/
u
′
2 p
k
(R

e
τ
=

5
5
0
)

Figure 8: Peak velocity variances as a function of Reτ , normalized by their value at
Reτ = 550. Symbols: u, circles; v, diamonds; w, squares; uv, gradients.

fluctuations (b) have a similar behavior, with substantial dependence of the inner-scaled
intensities on Reτ . In this case, the formation of an extended logarithmic layer is much
more evident, and we find evidence for a universal scaling

w′2/u2
τ ≈ B3 −A3 log(y/h), (3.8)

with A3 ≈ 0.44, B3 ≈ 0.95, first found by Jiménez & Hoyas (2008) at lower Reτ (with
A3 ≈ 0.5, B3 ≈ 0.8). The wall-normal velocity fluctuations (c) exhibit universality in
inner scaling in a wider part of the near-wall region, but their peak still grows with Reτ ,

even though the growth is sub-logarithmic, and probably v′2 tends to saturate as u′v′
+

approaches the unit value (d). Furthermore, no evident plateau of v′2 (predicted by the
attached-eddy hypothesis) has formed at the Reynolds numbers of this study. Overall, it
should be noted that the agreement of the observed trends with experiments is excellent,
except perhaps for the peak of the wall-normal velocity, which is by the way notoriously
difficult to measure. The agreement with the similarity formulation for the streamwise
turbulence intensity proposed by Marusic & Kunkel (2010), and based on an extension
of the attached eddy hypothesis, is also satisfactory.

Velocity variances are shown in (uτ , h) scaling in figure 9, to highlight outer-layer
trends. Clear collapse of the distributions is observed for the spanwise velocity fluctua-
tions, whereas violation of the uτ scaling is observed for the streamwise velocity fluctu-
ations. This discrepancy was first noticed by DeGraaff & Eaton (2000), who attributed
it to the effect of large-scale motions scaling with the velocity at the edge of the wall
layer (in this case, the mean centerline velocity). Later (del Álamo et al. 2004), it became
clear that the increase of u′ at fixed y/h is associated with h-scaled outer-layer modes
which are superposed onto the wall-attached modes, which scale on uτ . Here (figure 9b),
consistent with the findings of DeGraaff & Eaton (2000), it is found that scaling u′ by
uMIX = (uτuCL)

1/2 effectively removes this dependency, and collapse of the streamwise
velocity is observed for y/h & 0.2. Further explanation for the observed scaling is pro-
vided later on. More ambiguous is the behavior of v′. Inspection of figure 9(c-d) shows
than none of the two velocity scalings is able to remove the Reτ dependency. However,
as also found for the inner layer, the uτ scaling seems to yield a flat asymptotic behav-
ior at the highest Reτ available, which leads us to suspect that lack of universality is a
low-Reynolds-number effect.

A visual impression of the effect of outer-scaled eddies on the near-wall layer can
be gained from Fig. 10, where we show velocity fluctuation contours in wall-parallel
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Figure 9: Distribution of Reynolds stress components in outer scaling (a,c,e) and mixed
scaling (b,d,f). See table 1 for nomenclature of the DNS data.

planes at y+ ≈ 15, which corresponds to the position of the peak of streamwise velocity
fluctuations, and in the outer layer, at y/h = 0.3. A two-scale organization is clearly
visible at y+ = 15, with high- and low-momentum streaks having width of the order of
100 wall units, which are part of the inner-layer turbulence sustainment cycle (Smith
& Metzler 1983; Jiménez & Pinelli 1999), and superposed on them much larger streaks,
having size of the order of h. While this effect was previously noticed in DNS at lower
Reynolds number (Hutchins & Marusic 2007), the scale separation and imprinting effects
here are much more prominent. The flow organization in cross-stream planes is monitored
in figure 11, where we show the contours of velocity fluctuations. It appears that the
core flow is mainly organized into ’towering’ eddies which are attached to the wall, and
which occupy the entire half-channel in which they are generated. Significant correlation
of u′ and v′ events is observed (negative in the lower half of the channel, positive in
the upper half), which points to a non-negligible contribution of these eddies to the
Reynolds stress far from the walls. Less clear is the organization of w′. In the classical
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(a)

(b)

Figure 10: Instantaneous streamwise velocity field in x− z planes at y+ = 15 (a), y/h =
0.3, for the CH4 dataset. Contour levels are shown for −1.77 6 u′/urms 6 1.77 (a), and
−1.96 6 u′/urms 6 1.96 (b), from dark to light shades. The figure inset in (a) shows a
zoom of a (1500+ × 1000+) box, to highlight viscous length scales.

picture (del Álamo & Jiménez 2006), outer-layer streaks (i.e. u′ events) are associated
with rollers, hence spanwise velocity fluctuations should have a quadrupolar distribution
around positive/negative u′ events. However, this pattern is not easy to discern in the
flow visualizations.

3.2. Velocity spectra

Spectral densities of the velocity fluctuations are shown in figure 12 for the inner layer,
and in figure 13 for the outer layer. Note that wavelengths (λi = 2π/ki) are shown on the
horizontal axis, rather than the corresponding wavenumbers, to more clearly highlight
the eddies length scales. Further, the spectra are pre-multiplied by the wavenumber, in
order that equal areas correspond to equal energies in a logarithmic plot. Consistent
with expectations, inner scaling yields collapse of the spectra at the smallest resolved
scales of motion across the range of Reynolds numbers, whereas outer scaling yields
(approximate) collapse of the large scales. The inner-layer spectra clearly show the pres-
ence of an energetic inner site corresponding to the near-wall streak regeneration cycle.
The typical length scales in the spanwise direction remain very roughly universal, with
λu
z ≈ λw

z ≈ 100δv, λ
v
z ≈ 50δv, which in the classical interpretation (Hamilton et al.

1995), correspond to the near-wall streaks/streamwise vortices system. Additional en-
ergy appears at large wavelengths in the u and w spectra as Reτ increases, as a result of
outer-layer imprinting processes. A k−1

z range in the streamwise velocity spectra, whose
presence is predicted by the attached eddy hypothesis (Perry & Abell 1977; Nickels et al.
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(a)

(b)

(c)

Figure 11: Instantaneous cross-stream visualizations of u′ (a), v′ (b), w′ (c) for the CH4
dataset. Contour levels below −0.5uτ are shown in black, and contour levels above 0.5uτ

are shown in grey.

2005) at sufficiently high Reτ , is not clear based on the present data, even though its
emergence might be suggested by the small plateau in the pre-multiplied spectra at
Reτ = 4000. The spanwise spectral densities (figure 13) exhibit a qualitatively similar
organization as the inner-layer spectra, but on a different scale. Specifically, the typical
length scales of the eddies are λu

z ≈ λw
z ≈ h, λv

z ≈ h/2, which suggests that the large-
scale organization of the flow still consists of streaks coupled with rollers. It is noteworthy
that, while the spanwise spectra of v and w are relatively broad-banded, and tend to be
weakly affected by Reτ , those of u tend to exhibit a sharp peak as Reτ increases. This
feature is difficult to observe in experiments, which typically can only access streamwise
spectra upon use of Taylor’s hypothesis, and it is likely caused by the activation of the
outer-layer modes through a transient growth mechanism (Hutchins & Marusic 2007; del



14 M. Bernardini, S. Pirozzoli, P. Orlandi

(a)

101 102 103 104 1050

0.2

0.4

0.6
k
z
E

u
u
/
u
2 τ

(b)

101 102 103 104 1050

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

k
z
E

v
v
/
u
2 τ

(c)

101 102 103 104 1050

0.02

0.04

0.06

0.08

0.1

0.12

k
z
E

w
w
/
u
2 τ

λ+
z

(d)

101 102 103 104 1050

0.02

0.04

0.06

0.08

λ+
z

k
z
E

u
v
/
u
2 τ

Figure 12: Pre-multiplied spanwise spectral densities of velocity fluctuations at y+ = 15.
(a) u-spectra; (b) v-spectra; (c) w-spectra (d) uv co-spectra.
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Figure 13: Pre-multiplied spanwise spectral densities of velocity fluctuations at y/h = 0.3.
(a) u-spectra; (b) v-spectra; (c) w-spectra (d) uv co-spectra.

Álamo & Jiménez 2006). This observation is further corroborated from the uv co-spectra,
shown in figure 13(d), which can be interpreted as spectra of turbulence kinetic energy
production (at a given off-wall distance), and which exhibit the same spikes as the u
spectra.

Clearer control on the structural flow changes with Reτ is obtained from figure 14,
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Figure 14: Distribution of the production/dissipation ratio (a), and of the Taylor-scale
Reynolds number (b).

where we show the distribution of the production-to-dissipation ratio, P/ε (where P =
−(du/dy)u′v′), and of the effective Taylor-scale Reynolds number, defined as Reλ =
λq/ωrms, with λ = q/ωrms (where q2 = u′

iu
′

i is the velocity fluctuation variance, and
ωrms is the root-mean-square vorticity). The most noticeable feature of figure 14a is the
slow (but steady) increase of P/ε with Reτ in the outer layer, where it attains a plateau.
In fact, production exceeds dissipation for Reτ & 1000, by up to 8% in the CH4 simula-
tion, over a significant fraction of the outer wall layer. This effect was first speculated by
Bradshaw (1967), and it was not noticed in early DNS at limited Reynolds number (Man-
sour et al. 1988). A little production excess was observed to emerge in channel flows only
at Reτ & 1000 (Hoyas & Jiménez 2008). From a physical standpoint, this finding implies
that the excess turbulence kinetic energy shall be transferred to the underlying layers
through turbulent diffusion (convection and pressure). Indeed, the only other term left
in the kinetic energy budget is viscous diffusion, which is negligible throughout the outer
layer. This observation points to the activation of top-down mechanisms of influence, in
addition to the conventional bottom-up scenario (Hunt & Morrison 2001). The Taylor
Reynolds number (figure 14b) is observed to increase in the outer layer, attaining val-
ues which make it possible the formation of inertial ranges in the velocity spectra. The
presence of power-law ranges in the velocity spectra is verified in figure 15, where data
are shown in Kolmogorov units, at y/h = 0.3, which roughly coincides with the peak
location of Reλ. The spectra are reported in compensated form, in such a way that a
plateau corresponds to a power-law range, and compared with forced isotropic turbu-
lence data at Reλ = 142 (Jiménez et al. 1993), to verify the accuracy in the prediction
of the small scales of turbulence. The streamwise spectrum of u highlights the presence
of a decade with k−1.48 variation, which is significantly less steep than Kolmogorov’s
k−5/3 inertial spectrum. Similar deviations from the ideal behavior were observed in ex-
periments of grid turbulence (Mydlarski & Warhaft 1996), and homogeneously sheared
flow (Ferchichi & Tavoularis 2000), and attributed to low-Reynolds number effects. In
particular, Mydlarski & Warhaft (1996) proposed a fit for the scaling exponent of the
longitudinal spectra,

E(k) ∼ k5/3−p, p = 5.25Re
−2/3
λ . (3.9)

For Reλ ≈ 140 (which corresponds to the outer-layer value of the CH4 DNS), the result-
ing exponent is comparable with our observations. Similar conclusions also hold for the
transverse spectra (v and w), which exhibit power-law behavior with yet smaller slope
than the longitudinal ones. On the other hand, the spanwise spectra of u show the forma-
tion of a narrow k−5/3 spectral band (limited to the CH4 case) between the large-scale
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Figure 15: Compensated spectral densities of velocity fluctuations at y/h = 0.3 in the
streamwise direction (left column) and in the spanwise direction (right column). The
exponent used for compensation (p) was determined for each case as the value for which
a wider plateau was observed in the CH4 flow case. The symbols indicate isotropic tur-
bulence data at Reλ = 142 (Jiménez et al. 1993). See table 1 for nomenclature of DNS
data.

peak and the dissipative range, whereas power-law ranges with exponents different than
−5/3 are observed for v and w. This behavior can be tentatively ascribed to the fact
that energy is mainly pumped into the streamwise velocity mode through forcing acting
at a discrete spanwise wavenumber, which translates into the sharp spectral peak of u
at λz ≈ h. Such forcing is not found either in the other two velocity components, nor
in any streamwise spectra. Since Kolmogorov’s theory is based on the assumption that
energy if fed into the system only at the largest scales of motion, and on the assumption
of scale separation with the dissipative scales, it is then natural that Kolmogorov spectra
are more easily observed in the spanwise spectra of u, where production is concentrated.
Again, we point out that this type of analysis is difficult in experiments, and as a matter
of fact, clear Kolmogorov spectra were not observed in longitudinal spectra, even at much
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Figure 16: Contributions to turbulence kinetic energy production in inner units (a), and in
outer coordinates, with standard outer normalization (b), and with ‘mixed’ normalization
(c).

higher Reynolds number (Saddoughi & Veeravalli 1994; McKeon & Morrison 2007). In
this sense, the use of DNS at high Reynolds number can provide a useful contribution.

3.3. Analysis of turbulence kinetic energy production

Further insight into the mechanisms of turbulence kinetic energy production can be
gained by considering the following decomposition of the kinetic energy production
term (Orlandi 1997)

P = −u′v′
du

dy
= u

(
w′ω′

y − v′ω′

z

)

︸ ︷︷ ︸

PR

−
d

dy

(
uu′v′

)

︸ ︷︷ ︸

PC

, (3.10)

whereby production it is split into a term (PR) containing the streamwise component
of the fluctuating Lamb vector (p = −ω

′ × u′), where ω
′ = ∇ × u′, and which is an

indicator of the rate of energy transfer to small scales (Rogers & Moin 1987), and a term
in divergence form (PC), which thus represents redistribution of kinetic energy production
across the channel. The two terms in equation (3.10) are shown in figure 16 in inner and
outer scaling. For that purpose, we note that the obvious inner normalization for P is
by u3

τ/δv. On the other hand, the natural outer normalization is by u3
τ/h, assuming that

uτ is the only legitimate outer-layer velocity scale. The near-wall distributions, shown in
figure 16(a), highlight close universality in wall units, and confirm the pattern found in
pipe flow (Orlandi 1997), with accumulation of kinetic energy production associated with
PC , which is partly balanced by the energy flux from the large to the small scales. The
opposite scenario holds away from the wall, where PR is positive and PC is negative, the
crossover occurring near the peak position of the turbulent shear stress. In this case, the
natural outer scaling is not capable of collapsing the distributions across the Reτ range.
We then consider an alternative scaling, which should hold for PC , PR and P . We focus
on PR, under the following assumptions: i) v′ ∼ w′ ∼ uτ , as confirmed from the analysis
of the velocity variances; ii) ω′

y ∼ ω′

z ∼ uτ/δv, which is the generally accepted scaling for
the vorticity fluctuations, at least for y+ & 10 (e.g. Klewicki 2010); iii) u ∼ uCL in the
outer layer. We then conclude

P ∼ PC ∼ PR ∼ u2
τuCL/h. (3.11)

The scaling 3.11 is tested in figure 16(c), and shown to be much more accurate than
the standard outer scaling for y/h & 0.2. A consequence of this finding is that the
streamwise velocity fluctuations should scale as u′2 ∼ P/τ , where τ = h/uτ is the typical
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eddy turnover time in the outer layer (Simens et al. 2009). Hence, it follows that

u′2 ∼ uτuCL, (3.12)

which coincides with the mixed scaling proposed by DeGraaff & Eaton (2000), as shown
in figure 9b. The reader may consult Marusic & Kunkel (2010) for alternative explanation
of the occurrence of mixed scaling.

4. Conclusions

Flow statistics from DNS at computationally high Reynolds number have been col-
lected and commented. At the Reynolds number of the largest simulation (Reτ ≈ 4000)
some effects which are believed to be typical of the asymptotic high-Re regime start to
manifest themselves.

A range with near logarithmic behavior of the mean velocity is observed in the mean
velocity profiles. However, rather than being constant in the overlap layer, the log-law
indicator function exhibits a linear increase whose slope decreases with the Reynolds num-
ber. A logarithmic layer would only be recovered in the infinite Reynolds number limit,
for which the appropriate value of the von Kármán constant is k ≈ 0.41. This behavior
would be consistent with refined overlap arguments (Afzal & Yajnik 1973; Jiménez &
Moser 2007), but data at yet higher Reτ are certainly required to confirm its robustness.
Exploration of the high-Re regime also allows to verify other theoretical predictions,

including the logarithmic decrement of the wall-parallel velocity variances with the wall
distance (Townsend 1976). While clear and extended logarithmic ranges are observed for
w′, the same does not hold for u′, which rather tends to form a plateau in the overlap
layer, in the Reynolds number range under inquiry. This finding is perhaps due to the
need for yet higher Reynolds numbers. It is also confirmed that, while v′, w′, and u′v′

scale with the friction velocity, as in the standard theory (except for low-Re effects), u′

exhibits a mixed scaling, with (uτuCL)
1/2 (DeGraaff & Eaton 2000). Justifications for

the observed scaling are proposed, based on dimensional analysis applied to the kinetic
energy production term. A limited spectral range with k−5/3 Kolmogorov scaling is only
observed for the outer-layer spanwise spectra of u′, whereas all other longitudinal and
transverse spectra exhibit power-law behavior with less steep slope. This behavior has
been related to the presence of a sharply peaked spectral forcing, associated with O(h)
outer-layer modes, whose excess energy is transferred to the underlying layers through
turbulent transport.

Flow statistics are available at the web page http://grassopc.dma.uniroma1.it/channel/,
with supporting documentation.

We acknowledge that some of the results reported in this paper have been achieved us-
ing the PRACE Research Infrastructure resource JUGENE based at the Forschungszen-
trum Jülich (FZJ) in Jülich, Germany.
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