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We investigate the behavior of the canonical turbulent Couette flow at computationally
high Reynolds number through a series of large-scale direct numerical simulations (DNS).
We achieve a Reynolds number Reτ = h/δv ≈ 1000, where h is the channel half-height,
and δv is the viscous length scale) at which some phenomena representative of the asymp-
totic Reynolds number regime manifest themselves. While a logarithmic mean velocity
profile is found to provide a reasonable fit of the data, including the skin friction, closer
scrutiny shows that deviations from the log law are systematic, and probably increasing
at the higher Reynolds numbers.

The Reynolds stress distribution shows the formation of a secondary outer peak in
the streamwise velocity variance, which is associated with significant excess of turbulent
production as compared to the local dissipation. This excess is related to the forma-
tion of large-scale streaks/rollers, which are responsible for a substantial fraction of the
turbulent shear stress in the channel core, and for significant increase of the turbulence
intermittency in the near-wall region.

1. Introduction

Turbulent Couette flow, which is physically realized by differential motion of two par-
allel infinite flat plates, is probably the most prototypical among canonical wall-bounded
flows, being homogeneous in two space directions, and having no imposed mean pressure
gradient. Hence, it is the only flow to experience exactly constant total stress across the
thickness, which is one of the hypothesis requested by Prandtl’s classical arguments for
the existence of a logarithmic layer. Because of its (apparent) simplicity, Couette flow is
frequently taken as an illustrative example for the structure of turbulent wall-bounded
flows in classical books (Schlichting & Gersten 2000), and it has been the subject of
several theoretical investigations, aimed at clarifying the mechanisms responsible for the
self-sustainment of near-wall turbulence (Hamilton et al. 1995; Waleffe 1997), and for
the onset of outer-layer energy-containing modes (Hwang & Cossu 2010). Also, because
of the establishment of strong large-scale outer-scaled motions, Couette flow is an ideal
testbed for probing inner-outer wall turbulence interaction phenomena of imprinting and
modulation (Pirozzoli et al. 2011).
Despite its apparent simplicity, Couette flow poses significant challenges to experi-

mental investigations, typically carried out by means of moving belts which are prone
to deform, especially at high speed. As a consequence, pure Couette flow has received
much less attention as compared to, e.g. Poiseuille pressure flow in channels and pipes.
Relevant early studies include those of Reichardt (1956); Robertson (1959); El Telbany
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& Reynolds (1982); Aydin & Leutheusser (1991); Tillmark & Alfredsson (1992), which
are all limited to Rec . 20000, where Rec = uch/ν is the Reynolds number based on
the half velocity difference between the two walls (uc), and the channel half-height (h).
Experiments have allowed to clarify some peculiar features of Couette flow, namely the
onset of large-scale motions in the form of rolls/streaks pairs, which occupy the whole
channel, and whose typical streamwise and spanwise wavelengths are λx = 40 − 65h,
λz = 4 − 5h, respectively (Tillmark & Alfredsson 1998; Kitoh et al. 2005). However,
as also apparent in recent studies (Kitoh & Umeki 2008), there is very little consensus
among different experimental set-ups, even for global quantities such as skin friction.
Over the years, the origin of the formation and sustainment of the h-scaled rolls has
been traced to mechanisms of nonlinear feedback caused by streaks instability (Hamilton
et al. 1995), or to transient growth phenomena (Hwang & Cossu 2010).
Given the difficulties encountered by experiments, DNS constitutes an invaluable tool

for the study of turbulence in Couette flow. Indeed, early numerical experiments (Lee
& Kim 1991; Bech et al. 1995) confirmed the existence of large-scale structures which
qualitatively resemble those observed in experiments. However, it soon became clear that
the size and the persistence of those large eddies poses stringent demand to DNS in terms
of the size of the computational box, which shall be large enough to contain at least a
representative ensemble of them. Detailed studies in this respect (Komminaho et al.

1996; Tsukahara et al. 2006) have shown that, in order to alleviate spurious effects of
flow confinement, boxes with size Lx ≈ 60h, Lz ≈ 16h are needed. Since the size of the h-
scaled eddies is not expected to depend significantly on the Reynolds number (the effect
of viscosity being mainly concentrated in the thin near-wall sublayer), and since the mesh
resolution for DNS should stay constant in wall units, it follows that the total number
of grid points should roughly grow as Re3τ , a more accurate estimate being Re11/4τ (Pope
2000). It is then clear that huge computational resources are required even at moderate
Reynolds numbers. For this reason, the upper limit of Reynolds number achieved so far
in DNS is Rec ≈ 3000 (Lee & Kim 1991), corresponding to friction Reynolds number
Reτ ≈ 170 (here Reτ = huτ/ν, where uτ =

√

τw/ρ is the friction velocity), although
in rather narrow computational box, having length 4πh and width 8/3πh. Therefore, in
this respect it is more relevant to cite the study of Tsukahara et al. (2006), in which
Reτ ≈ 130 was achieved in large computational boxes. Results of Couette flow at Reτ
up to 550 in wide boxes have recently been presented by Avsarkisov et al. (2014).

The main goal of this paper is to widen the Reynolds number envelope for turbulent
Couette flow, thus analysing physical phenomena not accessible so far. A special effort
will be made to clarify the reasons for the observed deviations from a ‘canonical’ behavior,
and to highlight the contribution of the large-scale motions to the overall dynamics.

2. Computational setup

We solve the Navier-Stokes equations for a divergence-free velocity field, which are dis-
cretized in an orthogonal coordinate system (x, y, z denote the streamwise, wall-normal
and spanwise directions) using staggered central second-order finite-difference approx-
imations, so as to guarantee that kinetic energy is globally conserved in the limit of
inviscid flow. Time advancement is carried out by means of a hybrid third-order low-
storage Runge-Kutta algorithm, coupled with the second-order Crank-Nicolson scheme,
combined in the fractional-step procedure, whereby the convective and the diffusive terms
are treated explicitly and implicitly, respectively. The Poisson equation for the pressure
field, stemming from the incompressibility condition, is efficiently solved through Fourier
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Flow case Line style Rec Reτ Nx Ny Nz ∆x+ ∆z+ Tuτ/h

C1 Dashed 3000 171 1280 256 896 7.55 4.80 113.9
C2 Dash-dot 4800 260 2048 256 1280 7.18 5.10 72.2
C3 Dash-dot-dot 10133 507 4096 384 2560 7.00 4.99 74.9
C4 Solid 21333 986 8192 512 5120 6.80 4.84 54.1

Table 1: List of parameters for turbulent Couette flow cases. Rec = huc/ν is the bulk
Reynolds number, and Reτ = huτ/ν is the friction Reynolds number, with uc the center-
line velocity. Nx, Ny, Nz are the number of grid points in the streamwise, wall-normal,
and spanwise directions. ∆x+, ∆z+ are the grid spacings in the wall-parallel direction,
in wall units. The time window used for collecting the flow statistics T is given in terms
of eddy turnover times h/uτ .

transform-based methods (Kim & Moin 1985). A full description of the numerical method
is provided in Orlandi (2000).

For the sake of convenience (Bernardini et al. 2013) the computations are carried out
in a reference frame in which the bulk velocity is zero, hence the lower wall moves at
a speed −uc, and the upper wall with a speed +uc. The DNS have been carried out in
a (Lx × Ly × Lz) = (18πh × 2h × 8πh) computational box, which based on previous
experiences (Komminaho et al. 1996; Tsukahara et al. 2006) at much lower Reynolds
number is expected to be sufficient to prevent spurious dynamics from developing. Here-
inafter, the nondimensional wall-normal coordinate η will be used, in such a way that
η = 0 corresponds to the channel centerline, and η = ±1 corresponds to the two walls,
whereas the distance from the nearest wall will be denoted with y. The mesh spacing in
the wall-parallel directions has been kept approximately the same in wall units for all the
simulations, accounting for grid refinement tests carried out in previous studies (Bernar-
dini et al. 2014). An error-function mapping (η(ξ) = erf(αξ/2)/erf(α/2), ξ = [−1; 1],
with α = 4) has been used to cluster points in the wall-normal direction, in such a way
that the first point off the wall is at ∆y+w 6 0.08. Details on the computational mesh and
on the flow parameters for the DNS are provided in table 1.

The simulations have been initiated with a linear velocity profile, with superposed
random disturbances. After the initial transient, spatial averages of the flow fields in
wall-parallel planes are collected at time intervals of ∆t ≈ h/uc. The time window used
for the averaging procedure (see table 1) was selected by monitoring the running averages
of the velocity variances at the channel centerline. In the worst case, the running average
of the streamwise velocity variance ranges within a band of no more that 1% with respect
to its final value. A validation study of the solver for Couette flow is reported in Pirozzoli
et al. (2011), and not repeated here.

As frequently quoted in the literature (Komminaho et al. 1996; Tsukahara et al. 2006),
numerical simulations of plane Couette flow using periodic boundary conditions in the
streamwise and in the spanwise direction tend to be significantly affected by the size
of the computational box, which may yield unnatural confinement effects. This effect
is monitored through the two-point correlation of the streamwise velocity fluctuations
(Ruu), which is shown in figure 1, at the channel centerline. Regarding the streamwise
direction (panel (a)), similar conclusions can be drawn as by Tsukahara et al. (2006),
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Figure 1: Streamwise (a) and spanwise (b) two-point correlation coefficient (Ruu) of
streamwise velocity fluctuations at the channel centerline. See table 1 for nomenclature
of the DNS data.

in that the box size is at least sufficient to have inversion in the sign of the correlation
coefficient, which means that at least one streamwise wavelength is captured within
the computational box. Contrary to the observations of Tsukahara et al. (2006), we do
not note significant Reynolds number dependence for these statistics. The correlation
coefficients in the spanwise direction are shown in figure 1(b). Results very similar as
Tsukahara et al. (2006) are found at the lower Reynolds numbers (flow cases C1, C2),
with the correlation decaying sufficiently fast away from the origin. However, at higher
Reynolds numbers the first negative peak, which yields a typical spanwise size of the large-
scale motions developing in the channel core, shifts to higher values, and the correlation
does not drop off to zero at the maximum separation. This observation can be interpreted
with the emergence of large-scale streaks/rollers in the core flow, which become stronger
as the Reynolds number is increased. As discussed later, these streaks/rollers have a
typical spanwise size of about 5h, and they have a nearly sinusoidal dependence on
the spanwise coordinate. Hence, their correlation length scale is nominally infinite. This
implies that any simulation with finite spanwise extent is contaminated by confinement
effects, and the case is also likely to be in experiments. The results shown in the following
(and probably all experimental and numerical results for Couette flow) should then be
interpreted with this caveat in mind.

3. Results

3.1. Velocity statistics

The mean streamwise velocity profiles for the C1-4 simulations are shown in figure 2(a),
which well highlights the onset of a layer with nearly logarithmic velocity variation,
whose width apparently increases with Reτ . Visually fitting the Couette data with a
logarithmic velocity distribution u+ = 1/k log y+ + C suggests that the classical set of
log-law coefficients k ≈ 0.41, C ≈ 5, adequately reproduces the DNS data. More refined
information on the behavior of the mean velocity profile can be gained from inspection
of the log-law diagnostic function

Ξ = y+ du+/dy+, (3.1)

shown in figure 2(b), whose constancy would imply the presence of a genuine logarithmic
layer in the mean velocity profile. The figure supports universality of the mean velocity
in inner units, with a near-wall maximum of about 5.5, which is nearly identical as in
Poiseuille flow (Bernardini et al. 2014), followed by a minimum at y+ ≈ 60. Further away
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Figure 2: Distribution of mean velocity (a) and log-law diagnostic function (b), as defined
in equation (3.1). The thick grey line correspond to the inner-layer log law, with k = 0.41,
C = 5. The inset in panel (b) shows the same data on a semi-log diagram, to highlight
the inner-layer peak. See table 1 for nomenclature of the DNS data.

from the wall, a maximum forms whose position scales in outer units, at y/h ≈ 0.25.
Between the two extrema the diagnostic function is far from constant, with a peak-
to-peak difference which seems to even increase with Reτ . Hence, based on the present
results, asymptotic convergence of the mean velocity profile to the log law in the turbulent
Couette flow is far from clear. This behavior is distinctly different than Poiseuille flow. In
that case, recent DNS data (Bernardini et al. 2014) have shown the presence of systematic
linear corrections to the log law, whose amplitude decreases as 1/Reτ . Hence, in that
case, logarithmic behavior should then be recovered in the infinite Reτ limit. Possible
alternatives to the logarithmic law have also been pursued, by monitoring the power-law
diagnostic function, namely y+/u+(du+/dy+), whose constancy would imply power-law
variation of the mean velocity. The resulting distributions, not shown, again do not show
any significant plateau.

Mean velocity profiles in outer representation are shown in figure 3, where the stream-
wise velocity is normalized by either the wall speed, or by the friction velocity. The
distinctive S-shaped profile typical of Couette flow is recovered in all cases. Notably, the
slope of the profiles at the centerline seems to decrease in both representations, even
though the decline is slower if the friction velocity is used for normalization. This ob-
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Figure 3: Mean velocity profiles scaled with uc (a) and with uτ (b). See table 1 for
nomenclature of the DNS data.

servation has some interesting theoretical impact, as it relates to the asymptotic shape
of the velocity profile in the Reτ → ∞ limit. In this respect, several (often conflicting)
statements have been made. According to some studies, the centerline velocity slope
in outer units, S = h/uc(du/dy), should asymptote to a constant, typically quoted to
be S ≈ 0.2 (Busse 1970), whereas according to other the inner-scaled velocity slope
Rs = h/uτ (du/dy) should approach a limit value (Townsend 1976). However, none of
the two scenarios has received any convincing support either in DNS or experiments (Ki-
toh et al. 2005), and different authors report different trends with Re. This is probably a
consequence of experimental difficulties in measuring small velocity differences in internal
flows. The slope parameters from the present DNS are shown in figure 4, as a function of
Rec, with additional data from earlier studies. Overall, we find substantial decrease of S,
but we also notice slight decline of Rs. This observation seems to suggest that the defect
law u(y)/uτ = g(η) is not fully established (at least in this Reynolds number range),
and thus the correct outer velocity scale is not simply uτ . The issue of whether the inner
slope parameter Rs attains a constant value cannot be sorted out based on the present
data. Nevertheless, either if the decreasing trend continues or an asymptote is reached, it
appears that the asymptotic core profile of Couette flow shall be flat in inner units (and
in outer units as well), since uc/uτ → ∞ as Reτ → ∞, and all the velocity difference is
eventually supported in infinitely thin viscous layers adjacent to the walls.
Strictly related to the behavior of the mean velocity profile is the friction law. Most

studies of Couette flow refer to empirical approximations for the friction law, as that
given by Robertson (1959),

Cf =
G

logRe2c
, (3.2)

where Cf = 2τw/(ρu
2
c), and various choices for the constant have been proposed, in-

cluding G = 0.383 (Robertson 1959), G = 0.351 (El Telbany & Reynolds 1982), G =
0.420 (Tsukahara et al. 2006), G = 0.382 (Kitoh et al. 2005). Using the log-law repre-
sentation of the mean velocity profile the following friction law is obtained (Schlichting
& Gersten 2000)

√

2

Cf
=

1

k
log

(

Rec

√

Cf

2

)

+ C + C, (3.3)

where C depends on the deviation of the core velocity profile from the log law. In figure 5
we show the present DNS data together with experimental data from several sources,
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Figure 4: Mean velocity slope at centerline, scaled with uc/h (a) and with uτ/h (b), as a
function of Reynolds number. The solid circles denote the present DNS data. The open
symbols denote experimental data from Komminaho et al. (1996) (squares); Tsukahara
et al. (2006) (diamonds); El Telbany & Reynolds (1982) (up-triangles); Kitoh et al. (2005)
(down-triangles) The solid line denotes the fit S = 0.34/ log10 Rec (Robertson 1959).
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Figure 5: Comparison of skin friction coefficient with correlations and experiments. The
solid circles denote DNS from the C1-4 datasets. Filled symbols refer to previous DNS
data by Bech et al. (1995) (squares); Komminaho et al. (1996) (triangles); Tsukahara
et al. (2006) (diamonds). Open symbols refer to experimental data by El Telbany &
Reynolds (1982) (up-triangles); Kitoh et al. (2005) (down-triangles); Reichardt (1956)
(diamonds); Robertson (1959) (stars). The solid line indicates the logarithmic friction
law (3.3) with k = 0.41, C = 5, C = 0; the dashed line indicates the friction law (3.2)
with G = 0.424.

compared with formulas (3.2),(3.3). It appears that our data are consistent with previous
DNS data at lower Reynolds number, altough they seem to be out of trend with respect
to most experimental data (differences with respect to El Telbany & Reynolds (1982) are
up to 20%), except for those of Reichardt (1956). Furthermore, our DNS data appear to
be well consistent with the logarithmic friction law, by selecting k ≈ 0.41, C ≈ 5, C = 0
(see figure 2), at least for Rec & 103, sufficient to observe a sensible near-logarithmic
layer. The power-law fit (3.2) also appears to deliver adequate representation of the DNS
data, by setting G = 0.424.

The second-order velocity fluctuations statistics are shown in inner coordinates in
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Figure 6: Distribution of Reynolds stress components across the channel in wall units.
Refer to table 1 for nomenclature of the DNS data.
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Figure 7: Peak Reynolds stress components as a function of Rec, normalized by their
value for the C1 flow case. Symbols: i = j = 1, circles; i = j = 2, diamonds; i = j = 3,
squares; i = 1, j = 2, triangles.

figure 6, and their peaks reported in figure 7 as a function of Rec. The main impression
gained from the figures is that the trends observed in Poiseuille flow (Hoyas & Jiménez
2006; Bernardini et al. 2014) continue to hold. Specifically, the longitudinal (a) and
the transverse (b) normal stresses show clear lack of universality, and their amplitudes
increase nearly logarithmically with Reτ . This behavior has been attributed (Metzger
& Klewicki 2001; del Álamo et al. 2004; Mathis et al. 2009) to the increasing influence
of inactive outer-layer modes. It is noteworthy that in the C4 flow case the Reynolds
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number is high enough that a secondary outer peak of u′2 appears around y+ ≈ 300
(y/h ≈ 0.33). The existence of a secondary peak of the streamwise velocity variance has
been the subject of significant disputes in recent years (Hultmark et al. 2012), and it has
sometimes been attributed to limited probe resolution effects in experiments. Alfredsson
et al. (2011, 2012) proposed that in pipes, channel flows, and boundary layers, a secondary
peak in u′2 should arise at Reτ & 15000, thus explaining why it has not been observed
in recent plane channel flow DNS at Reτ ≈ 4000 (Bernardini et al. 2014). Those authors

noticed that the position of the outer peak scales as Re1/2τ , hence it is proportional to
the position of the turbulent shear stress peak. As a consequence, the secondary peak
should rather be interpreted as a second inner peak than a real outer peak. The nature
of the secondary peak here observed for Couette flow is probably different than in other
canonical wall-bounded flows, occurring much earlier in term of Reynolds number, and
residing at much larger distance from the wall.

The wall-normal velocity fluctuations and the turbulent shear stress (see panels (c),(d))
exhibit near-universality in inner scaling. This behavior is entirely consistent with Townsend’s
attached-eddy hypothesis (Townsend 1976), however, it is somewhat different from the
case of Poiseuille flow, in which the wall-normal stress exhibits slow but consistent growth
with Reτ (Bernardini et al. 2014), consistent with the continuing growth of the peak tur-
bulent shear stress.

3.2. Velocity spectra

The emergence of an outer peak of the streamwise Reynolds stress can be well understood
by monitoring the pre-multiplied spectral densities of u, shown in figure 8. The figure
highlights the presence of a main energetic inner-layer site at y+ ≈ 15, corresponding to
inner-layer streaks with a typical wavelength of about 100 wall units, which is roughly
universal across the Reynolds number range, for all wall-bounded flows (Monty et al.

2009). Similar to other canonical flows, the spectra also exhibit a secondary energetic site
in the outer layer, whose intensity increases in wall units, and which has been traditionally
associated with boundary layer superstructures (Hutchins & Marusic 2007), and large-
scale and very-large-scale motions in internal flows (Hoyas & Jiménez 2006; Kim &
Adrian 1999). In the case of the Couette flow we find that the spectral footprint of these
organized structures consists of a nearly pure tone at the wavelength λz ≈ 5h, with a
weaker secondary harmonic spectral line visible in the C3 and C4 flow cases. The intensity
of the outer peak appears to be much higher than in other wall-bounded flows at the same
Reynolds number. Apparently, the effect of the peak is felt all the way down to the wall,
especially at the higher Reynolds numbers. It is noteworthy that the spectral signature
in the core part of the flow is consistent with simple inviscid models of rollers (Waleffe
1997; Papavassiliou & Hanratty 1997), which predict u(y, z) ∼ cos(π/2η) cos(βz), where
β = 2π/λz is the roll wavenumber in the spanwise direction.

The observed structural flow changes with Reτ can be interpreted by monitoring the
local excess of kinetic energy production (P = −(du/dy)u′v′) over its dissipation rate
(ε = 2νs′ijs

′

ij). This is shown in figure 9, where we report the distributions of P−ε in pre-
multiplied form, so that equal areas underneath the curves correspond to equal integral
contributions. Figure 9 confirms the presence of a strong excess of production centered
at y+ ≈ 15, which corresponds to the near-wall turbulence self-sustainment cycle, and
which is universal in wall units. However, the figure also shows the onset of a secondary
spot with excess production, whose position moves outwards in wall units. Notably, in the
C4 flow case, the peak location coincides with the position of the secondary peak of the
streamwise velocity variance (see figure 6a). At the highest Reynolds number achieved
in the present study, that peak accounts for an integrated production excess which is
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Figure 8: Variation of pre-multiplied spanwise spectral density of u (kzEuu/u
2
τ ) with wall

distance, for flow cases C1 (a), C2 (b), C3 (c), C4 (d). Twelve contour levels are shown,
from 0.32 to 3.8.
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Figure 9: Distribution of pre-multiplied turbulence kinetic energy production excess. See
table 1 for nomenclature of the DNS data.

about 20% as the inner production site. Hence, its effect on the overall wall dynamics is
certainly not negligible, and it is observed to increase with Reτ . A similar (even though
much less evident) effect has also been observed in Poiseuille flow (Hoyas & Jiménez
2008; Bernardini et al. 2014). The presence of the outer peak implies that the excess
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Figure 10: Skewness (a-b) and flatness (c-d) of streamwise velocity fluctuations. See
table 1 for nomenclature of the DNS data.

turbulence kinetic energy is transferred toward the channel core and to the underlying
layers, mainly because of the action of turbulent diffusion, and indeed we have verified
that the contributions of pressure and viscous diffusion are negligible. This observation
points to the activation of top-down mechanisms of influence of wall-distant eddies on
the near-wall ones, in addition to the conventional bottom-up scenario (Hunt & Morrison
2001).

The presence of a top-down mechanism of influence is further evident in the streamwise
velocity skewness and flatness maps, shown in figure 10. An increasing trend of both
indicators is observed in the near-wall region, which suggests a more strongly intermittent
character of the velocity signal. The increased near-wall intermittency in wall-bounded
flows has been related (Mathis et al. 2009) to the modulation imparted by large-scale
outer structures. In particular (Pirozzoli et al. 2011), it has been shown that in Couette
flow large-scale high-speed events are connected to increased near-wall small-scale activity
(and vice-versa), mainly because of locally increased wall friction. More quantitatively
Schlatter & Örlü (2010) have shown that the local skewness of the streamwise velocity
fluctuations is strongly correlated with the one-point amplitude modulation coefficient.

3.3. Large-scale motions

A visual impression of the large-scale eddies which form in the channel core is provided
in figure 11(a), where we show streamwise velocity fluctuation contours in the channel
symmetry plane (η = 0). A distinctive organization into h-scaled high- and low-speed
streaks is evident, which maintain some coherence along the whole length of the channel,
while also showing some meandering. The same type of representation is used for a
cross-stream plane in figure 11(b), which shows that the core flow is mainly organized
into ‘towering’ eddies which are attached to the walls, and which reach out to the opposite
wall. Large-scale coherence is made clearer by averaging the flow fields in the streamwise
direction, thus effectively filtering out small-scale fluctuations, as well as the streaks
meandering (Papavassiliou & Hanratty 1997). In figure 11(c),(d) we show contours of the
streamwise-averaged velocity fluctuations (ũ), and of the averaged streamwise vorticity
(ω̃x), respectively. A clearer pattern emerges, with streaks having width of about 5h
and occupying the whole channel thickness, and associated rollers, which show up in the
form of alternating positive/negative streamwise vorticity zones. This pattern has been
the subject of several previous studies (Waleffe 1997; Papavassiliou & Hanratty 1997;
Tsukahara et al. 2006; Hwang & Cossu 2010), at much lower Reynolds number.

The quantitative effect of the core-flow rollers is considered next, by taking statistics
of the velocity fluctuations associated with the streamwise-averaged fields. The resulting
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Figure 11: Visualization of instantaneous streamwise velocity in the channel centerplane
(a) and in a cross-stream plane (b). Streamwise averages of u and of streamwise vorticity
ωx are given in frames (c) and (d). Note that axes in panels a-c are not to scale. Contour
levels of u below −uτ are shown in black, and contour levels above uτ are shown in grey.
Contour levels of ωx below −uτ/h are shown in black, and contour levels above uτ/h are
shown in grey.



13

(a)

100 101 102 1030

0.5

1

1.5

2

2.5

3

3.5

4

y+

(ũ
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Figure 12: Distribution of coherent Reynolds stress components. The tilde symbol denotes
instantaneous averaging in the streamwise direction. See table 1 for nomenclature of the
DNS data.

‘coherent-stress’ components are shown in figure 12. The coherent part of the streamwise
velocity variance is found to grow toward the channel centerline, attaining a peak at a
distance y/h ≈ 0.4 for flow cases C3, C4, which one can tentatively connect with the
secondary peak of the streamwise Reynolds stress observed in figure 6. Its magnitude
is found to account for about 50% of the overall velocity variance in the core part of
the flow. Similar reasonings apply to the coherent turbulent shear stress, which if found
to peak at the channel centerline, and which accounts for about half of the total shear
stress. On the other hand, the rollers are found to contain little wall-normal and spanwise
velocity fluctuations, probably because the v- and w-bearing eddies are less coherent in
the streamwise direction, and undergo cancellation because of the averaging procedure.
All the coherent stresses appear to increase with Reτ when expressed in wall units, thus
indicating increased importance of the core mode in the global dynamics.

4. Conclusions

Flow statistics from DNS of turbulent Couette flow at computationally high Reynolds
number have been presented, in a range of Reτ which well exceeds previous datasets. At
Reτ & 500 effects which are believed to be typical of the asymptotic high-Re regime start
to manifest themselves. Visual fit of the mean velocity profiles suggests the formation of a
range with near logarithmic behavior of the mean velocity, which is compatible with the
classical set of coefficients, namely k = 0.41, C = 5. This fit is also adequate for practical
purposes, in that the skin friction data are consistent with the classical logarithmic
friction law, with zero value of the outer-layer constant. However, close inspection of the
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log-law indicator function shows, rather than a plateau, significant excursions between
two extrema, which become more severe as Reτ is increased. Hence, extrapolation of the
present data would suggest that a genuine log layer is not going to be found in Couette
flow, even at extreme Reynolds number. This is in contrast with recent data for Poiseuille
flow, which supports convergence to the logarithmic law, although only in the infinite
Reynolds number limit. Data at yet higher Reτ are certainly welcome to further verify
this trend. The core velocity profile is found to be linear over a narrow interval across
the centerline, and its minimum slope is found to slowly decrease in wall units. This is a
strong hint that the asymptotic state of turbulent Couette flow consists of a flat velocity
profile with finite slip at the two walls. Similar to other wall-bounded flows, the wall-
parallel velocity variances exhibit a near-wall peak which seems to diverge logarithmically
with Reτ , and connected in the classical scenario with Townsend’s attached eddies.

Notably, a secondary outer peak of the streamise velocity variance is observed in the
highest Re simulation, which has not been observed so far in DNS of other canonical
wall-bounded flows. This outer peak if found to occur at y/h ≈ 0.3, and to well match
the position of the outer site at which turbulence kinetic energy production exceeds dis-
sipation. From a structural viewpoint, the emergence of excess energy in the outer layer
has been traced to the presence of rollers/streaks which occupy the whole channel, and
whose spectral signature consists of a sharp peak at a wavelength of about five channel
half-heights. Conditional statistics have shown that these large eddies are responsible for
a substantial fraction of the streamwise Reynolds stress, hence contributing to the forma-
tion of the outer peak of u′, and to account for about a half of the turbulent shear stress
in the channel core. Hence, they are likely to be responsible for the observed deviations of
the mean velocity profile from a genuine logarithmic behavior. A side consequence of our
observations is that, given the nearly sinusoidal behavior of the rollers in the spanwise
direction, their correlation length scale is nominally infinite. Hence, data from both DNS
and experiments of Couette flow are likely to be always contaminated by side effects,
which would explain the large scatter observed in the existing literature, even for very
basic flow properties.

Given this caveat, we believe that the present findings reinforce the statements made
in Pirozzoli et al. (2011), that Couette flow can be regarded as an extreme state of
wall turbulence, which can be used to explore with clarity phenomena of imprinting and
modulation, without necessarily reverting to extreme-Reynolds-number simulations.

We acknowledge that some of the results reported in this paper have been achieved us-
ing the PRACE Research Infrastructure resource FERMI based at CINECA, Casalecchio
di Reno, Italy.
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Schlatter, P. & Örlü, R. 2010 Quantifying the interaction between large and small scales
in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22, 051704.



16 S. Pirozzoli, M. Bernardini, P. Orlandi

Schlichting, H. & Gersten, K. 2000 Boundary layer theory . 8th edn. Springer-Verlag.
Tillmark, N. & Alfredsson, P.H. 1992 Experiments on transition in plane Couette flow. J.

Fluid Mech. 235, 89–102.
Tillmark, N. & Alfredsson, P.H. 1998 Large scale structures in turbulent plane Couette

flow pp. 59–62.
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow . 2nd edn. Cambridge University

Press.
Tsukahara, T., Kawamura, H. & Shingai, K. 2006 DNS of turbulent Couette flow with

emphasis on the large-scale structure in the core region. J. Turbul. 7, 1–16.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900.


