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Abstract

We develop a high-fidelity numerical solver for the compressible Navier-Stokes equations, with the main aim of

highlighting the predictive capabilities of low-diffusive numerics for flows in complex geometries. The space dis-

cretization of the convective terms in the Navier-Stokes equations relies on a robust energy-preserving numerical flux,

and numerical diffusion inherited from the AUSM scheme is added limited to the vicinity of shock waves, or wherever

spurious numerical oscillations are sensed. The solver is capable of conserving the total kinetic energy in the inviscid

limit, and it bears sensibly less numerical diffusion than typical industrial solvers, with incurred greater predictive

power, as demonstrated through a series of test cases including DNS, LES and URANS of turbulent flows. Simplicity

of implementation in existing popular solvers such as OpenFOAM is also highlighted.
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1. Introduction

Computational fluid dynamics (CFD) has become a common tool for the prediction of flows of engineering in-

terest. Since the pioneering works of Orszag and Patterson [1], Kim et al. [2], which first showed the potential of

computers for high-fidelity prediction of turbulent flows, many studies have appeared in which CFD has been used

to tackle fundamental topics in turbulence research [3, 4, 5], and to solve flows of industrial interest [6, 7, 8, 9]. Al-

though CFD is currently used with good degree of success in the routine industrial design process, a large disparity

between the accuracy of algorithms used in commercial flow solvers and in academia is still evident. Spectral meth-

ods [10], high-order finite difference (FD) methods [11], discretely energy-preserving schemes [12, 13], and accurate

explicit time integration [14, 15] are common features of many academic flow solvers. Accurate techniques are also

available to capture shock waves in compressible flow, which include the essentially-non-oscillatory schemes and

their weighted counterpart, or hybrid schemes [16, 17, 18]. On the other hand, most commercial flow solvers rely on

first/second order unstructured finite volume (FV) discretizations, in which the nonlinear terms are typically stabilized

through upwinding, and time is advanced through implicit segregated algorithms [19, 20]. In the case of compress-

ible flows, shock-capturing capability is frequently achieved through sturdy but outdated total-variation-diminishing

(TVD) schemes, or rougher. A common feature of most commercial flow solvers is the use of severely diffusive nu-

merical algorithms, which may negatively impact the prediction of unsteady turbulent flows, especially in large-eddy

simulation (LES) [21]. Although high-accuracy, energy-consistent discretizations can also be applied to unstructured

meshes of industrial relevance [22, 23, 24, 25, 26], it appears that the approach has not been incorporated in solvers of

common use, with few exceptions such as the CHARLES solver [27, 28]. The main aim of this work is trying to bridge

this gap, by introducing high-fidelity low-diffusive numerical schemes of academic use into existing unstructured flow

solvers, with the eventual intent of achieving more accurate prediction of turbulent flows of industrial interest, pos-

sibly with little computational overhead. For illustrative purposes, we consider as baseline solver the open-source

library OpenFOAM [29], which is released under the General Public Licence (GPL), and which has experienced large
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Figure 1: Computational cell for evaluation of the numerical flux. ON denotes the interface between the owner cell O, and the neighbouring cell

N, and nON is the outer normal for O. L and R denote limit states at the two sides of the interface (L ≡ O, R ≡ N in the case of first-order

reconstruction).

diffusion in the recent years. The baseline distribution of OpenFOAM comes with several compressible flow solvers,

of which the most widely used is rhoCentralFoam, relying on full discretization of the convective fluxes through the

central TVD scheme of Kurganov and Tadmor [30].

Some attention has been recently devoted to modification of the standard OpenFOAM algorithms with the goal

of reducing their numerical diffusion [31, 32]. For instance, Vuorinen et al. [31, 32] have introduced a scale-selective

mixed central/upwind discretization which is particularly beneficial for LES, especially when coupled with low-

diffusion Runge-Kutta time integration. Although the approach limits the amount of numerical diffusion, discrete

conservation of total kinetic energy in the inviscid limit is not guaranteed. Shen et al. [33, 34] developed an implicit

compressible solver for OpenFOAM relying on the AUSM scheme [35] and found similar performances as rhoCen-

tralFoam. Cerminara et al. [36] developed a compressible multi-phase solver for OpenFOAM based on the PIMPLE

algorithm [20] for the simulation of volcanic ash plumes, which is considerably less diffusive than rhoCentralFoam.

Hence, it appears that the OpenFOAM community is concerned about numerical diffusion, and some effort is being

devoted to trying to minimize it, both for incompressible and compressible flows. Herein we describe an algorithm

for the numerical solution of the compressible Navier-Stokes equations which allows to discretely preserve the total

flow kinetic energy from convection in the inviscid limit on Cartesian meshes [37], and to maintain good conserva-

tion properties also on unstructured triangular meshes through localized augmentation of the numerical flux with the

AUSM pressure diffusive flux. Shock-capturing capability is further obtained through localized use of the full AUSM

diffusive flux, wherever shocks are sensed. The main The full algorithm is illustrated in detail in Section 2, and the

results of several numerical tests reported in Section 3. Concluding remarks are given in Section 4.

2. Numerical algorithm

We consider the Navier-Stokes equations for a compressible ideal gas, integrated over an arbitrary control volume
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are the vector of conservative variables, and the associated Eulerian and viscous fluxes, respectively. Here ρ is the

density, ui is the velocity component in the i-th coordinate direction, p is the thermodynamic pressure, E = e+ u2/2 is

the total energy per unit mass, e = RT/(γ − 1) is the internal energy per unit mass, H = E + p/ρ is the total enthalpy,

R is the gas constant, γ = cp/cv is the specific heat ratio, σi j is the viscous stress tensor, and qi is the heat flux vector.
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Mode Intent IC IP

A Fully resolved smooth flows 0 0

B Unresolved smooth flows 0 1

C Shocked flows 1 1

Table 1: Modes of operation of the flow solver, with corresponding suggested values for the flags in Eqn. (9).

The boundary Eulerian flux in Eqn. (1) is approximated on a polyhedral cell O (see Fig. 1 for illustration) as

follows

1

V

∫
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finidS ≈
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∑

N

f̂ON∆S ON , (3)

where f̂ON is the numerical flux at the interface between the cell and its neighbour N, ∆S ON is the interface area, and
∑

N denotes summation on all cell faces.

As customary in the AUSM approach [35], we proceed by splitting the Eulerian flux in Eqn. (2) into a convective

and a pressure contribution, namely

fi = fi + pi =
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whose associated numerical fluxes are cast as the sum of a central and a diffusive part,

f̂ON = f̂C
ON + f̂D

ON , p̂ON = p̂C
ON + p̂D

ON . (5)

The central part of the convective flux is here evaluated as follows [37]

f̂C
ON = 1/8 (ρO + ρN) (unO + unN)

(

ϕO + ϕN

)

, (6)

where ϕ = (1, ui,H)T , and the pressure flux is evaluated through standard central interpolation,

p̂C
ON = 1/2 (pO + pN) . (7)

Unlike straightforward central differencing, the numerical flux (6) allows to discretely preserve the total kinetic energy

of the flow from convection, with incurred strong nonlinear stability properties. The above central numerical flux is

in fact found to be stable in fully resolved simulations (DNS) on Cartesian or weakly distorted meshes [37, 38].

However, in the case of practical engineering computations on unstructured meshes, and certainly if shock waves are

present, some (possibly small) amount of numerical diffusion is necessary. Hence, the diffusive fluxes in Eqn. (5)

should be locally activated wherever resolution is lost. To judge on the local smoothness of the numerical solution we

rely on a classical shock sensor [39]

θ = max
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∈ [0, 1], θON = 1/2 (θO + θN) , (8)

where u0 and L0 are suitable velocity and length scales [17], defined such that θ ≈ 0 in smooth zones, and θ ≈ 1 in the

presence of shocks.

In the case of smooth flows (no shocks) we have found that additional numerical stability with minimal accuracy

penalty can be achieved by applying the artificial diffusion term to the pressure flux only, in amount proportional

to θON . Capturing shock waves further requires concurrent activation of the convective diffusive flux, wherever θON

exceeds a suitable threshold (say θ∗, here set to 0.05, unless explicitly stated otherwise). Hence, the diffusive numerical
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Figure 2: Decaying isotropic turbulence: time evolution of turbulence kinetic energy (a) and density fluctuations (b) for rhoEnergyFoam in Mode

A (right triangles), Mode B (gradient symbols), Mode C with θ∗ = 0 (deltas), and for dnsFOAM (circles), rhoCentralFoam (squares). τ is the eddy

turnover time.

fluxes to be used in Eqn. (5) may be synthetically expressed as follows

f̂D
ON = IC H(θON − θ∗) f̂AUS M

ON , p̂D
ON = IP θON p̂AUS M

ON , (9)

where IC and IP are flags controlling the activation of the convective and pressure diffusive fluxes, H indicates the

Heaviside step function, and the artificial diffusion fluxes are borrowed from the AUSM scheme, as reported for

convenience in Appendix 5. Suggested values for IC and IP are given in Tab. 1, according to the type of numerical

simulation to be carried out.

Discretization of the viscous fluxes relies on standard second-order approximations for unstructured meshes [40],

which is implemented through the fvc :: laplacian() primitive of OpenFOAM. The resulting semi-discretized system

of ordinary differential equations, say du/dt = R(u), is advanced in time using a low-storage third-order, four-stage

Runge-Kutta algorithm,

u(ℓ) = u(0) + αℓ∆tR(u(ℓ−1)), ℓ = 1, . . . , 4, (10)

where u(0) = un, un+1 = u(4), with α1 = 1/4, α2 = 1/3, α3 = 1/2, α4 = 1.

3. Results

We hereafter present a series of test cases representative of the three modes of operation listed in Tab. 1, with

the goal of testing the energy-preserving capabilities of the present solver, here referred to as rhoEnergyFoam, and

compare its performance with standard OpenFOAM solvers. Euler turbulence and Taylor-Green flow are used to

quantify numerical diffusion. DNS of supersonic channel flow is used to compared with data from an academic

finite-difference solver. RANS and DES of subsonic turbulent flow past a circular cylinder are performed to test the

effectiveness of background numerical diffusion for smooth flows. The shock-capturing capabilities are further tested

using three classical flow cases, namely the inviscid supersonic flow past a forward-facing step, the transonic flow

past a RAE airfoil, and the transonic flow past the ONERA M6 wing.

3.1. Decaying homogeneous isotropic turbulence

In order to quantify the energy preservation properties of the present solver, numerical simulations of decaying

homogeneous isotropic turbulence are carried out at zero physical viscosity. Random initial conditions are used with

prescribed energy spectrum [41],

E(k) = 16

√

2

π

u2
0

k0

(

k

k0

)4

e−2(k/k0)2

, (11)
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Figure 3: Unstructured mesh for numerical simulation of Taylor-Green flow.

where k0 = 4 is the most energetic mode, and u0 is the initial r.m.s. velocity. The initial turbulent Mach number is

Mt0 =
√

3u0/c0 = 0.01 (c0 is the initial mean sound speed), and time is made nondimensional with respect to the

eddy turnover time τ = 2
√

3/(k0Mt0c0). Numerical simulations are carried out on a 323 Cartesian mesh with spacing

∆x, and the time step ∆t is kept constant, corresponding to an initial Courant number CFL = max (u0 + c0)∆t/∆x = 1.

Figure 2 shows the turbulence kinetic energy K = 1/2
∑

i(uαuα)iVi (where α is the generic coordinate direction, Vi

the volume of cell i and the overbar denotes Reynolds-averaging) and density fluctuations, as a function of time for

rhoEnergyFoam in the three modes of operation previously described. Note that in the numerical experiments the

threshold for activation of the convective diffusive fluxes is here momentarily set to zero, to give a perception for the

maximum possible amount of numerical diffusion in shock-capturing simulations. For comparison purposes, results

obtained with rhoCentralFoam and with the OpenFOAM incompressible DNS solver (dnsFoam) are also shown. It

is clear that both baseline OpenFOAM solvers are not capable of preserving the total kinetic energy, because of the

presence of numerical diffusion, which is higher in rhoCentralFoam. As expected, total kinetic energy is exactly

preserved from rhoEnergyFoam when operated in Mode A. The addition of numerical diffusion to the pressure term

(Mode B) causes some numerical diffusion, although still smaller than dnsFoam, and most kinetic energy is in fact

retained for one eddy turn-over time. Operation in Mode C (with θ∗ = 0) further increases numerical diffusion,

although the behavior is still sensibly better than rhoCentralFoam. It is also worth noticing that density fluctuations of

rhoEnergyFoam in Mode B are barely affected by the additional numerical dissipation, whereas they sensibly decrease

in Mode A, and are quickly dissipated in rhoCentralFoam.

3.2. Taylor-Green flow

The energy-preserving properties of the solver are further tested for the case proposed by Duponcheel et al. [42],

namely the time reversibility of the inviscid Taylor-Green flow. The solution is computed in a (2π)3 triply-periodic

box, and initialized as follows

ρ = ρ0, (12a)

u = u0 sin (k0 x) cos (k0 y) cos (k0 z), (12b)

v = u0 cos (k0 x) sin (k0 y) cos (k0 z), (12c)

w = 0, (12d)

p = p0 + u2
0/16[cos (2 k0 z) + 2 (cos (2 k0 x) + cos (2 k0 y)) − 2], (12e)

where k0 = 1 is the initial wavenumber, u0 = M0c0 is the reference velocity (here M0 = 0.01), and c0, p0, T0, and ρ0 are

the reference speed of sound, pressure, temperature and density. The Taylor-Green flow is widely studied as a model

for turbulence formation from ordered initial conditions, exhibiting rapid formation of small-scale structures with
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Figure 4: Time evolution of total kinetic energy (a-b), and enstrophy (c-d) for Taylor-Green flow at M0 = 0.01 on Cartesian mesh (a-c) and on

unstructured mesh (b-d). Data are shown for rhoEnergyFoam in Mode A (solid lines), rhoEnergyFoam in Mode B (solid lines with square symbols),

dnsFoam (dashed lines), and rhoCentralFoam (dotted lines). The vertical line indicates the time tu0k0 = 8, at which velocity vectors are reversed.
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Case Mb Reb Reτ Nx Ny Nz ∆x+ ∆y+w ∆z+ C f −Bq ∆tavuτ/h

CH15-OF 1.5 6000 220 384 128 192 7.20 0.40 4.80 0.0078 0.049 12.3

CH15-FD 1.5 6000 220 256 128 192 10.8 0.70 4.80 0.0077 0.048 15.2

Table 2: Flow parameters for DNS of plane channel flow for rhoEnergyFoam in Mode A (CH15-OF) and for finite-difference solver [43] (CH15-

FD). Mb = ub/cw and Reb = 2hρbub/µw are the bulk Mach and Reynolds number, respectively. The computational box is 4πh × 2h × 4/3π, with

h the channel half-height. Ni are the mesh points in each coordinate direction, and ∆y+w is the distance of the first grid point from the wall, ∆x+,

∆z+ are the streamwise and spanwise grid spacings, in wall units. Bq = qw/(ρwcpuτTw) is the heat flux coefficient and C f = 2τw/(ρbu2
b
) is the skin

friction coefficient and ∆tav is the averaging time interval.
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Figure 5: DNS of turbulent flow in plane channel: distribution of mean velocity (a) and Reynolds stresses (b) in wall units for CH15-OF (solid

lines) and CH15-FD (squares), for the DNS listed in Tab. 2.

incurred growth of vorticity. This flow case is computed both on a Cartesian and an unstructured mesh. The Cartesian

mesh has 323 cells, whereas the unstructured mesh is obtained by extruding a two-dimensional mesh with triangular

cells (see Fig. 3), hence including 85056 triangular prisms. This setting guarantees exact geometrical correspondence

of the elements on opposite faces of the computational box, hence periodicity can be exploited in all space directions.

The solution is advanced in time up to time tu0k0 = 8, at which all velocity vectors are reversed, and then further

advanced in time up to tu0k0 = 16. Based on the mathematical properties of the Euler equations, the initial conditions

should be exactly recovered [42].

Numerical diffusion generally spoils time reversibility, as shown in Fig. 4 where we report the time evolution of

turbulence kinetic energy and of the total enstrophy, defined asΩ = 1/2
∑

i(ωαωα)iVi. The total kinetic energy (panels

a, b) in fact shows monotonic decrease for dnsFoam both on structured and unstructured meshes, and rhoCentralFoam

exhibits sudden dissipation of all kinetic energy, on a time scale which is much less than unity (the lines are barely

visible in the chosen representation). On the other hand, kinetic energy is almost perfectly retained by rhoEnergyFoam

when operated in Mode A, whereas some effect of numerical diffusion is found in Mode B. The total enstrophy

computed on a Cartesian mesh (panel c) shows substantial growth up to time reversal, followed by corresponding

decrease. However, recovery of the initial condition is imperfect for dnsFoam, and the maximum vorticity at the end

of the simulation is higher than expected. This odd behavior is associated with the flow randomization at the end of

the forward run, which is not fully recovered in simulations contaminated by numerical diffusion. On unstructured

mesh (panel d) the behavior is similar, although the peak enstrophy is lower because of errors associated with mesh

distortion. Overall, this test shows that rhoEnergyFoam retains good low-diffusive characteristics also on unstructured

meshes, compared with the baseline OpenFoam solvers.

3.3. DNS of supersonic turbulent channel flow

In order to test rhoEnergyFoam for fully resolved compressible turbulent flows we carry out DNS of supersonic

channel flow at bulk Mach number Mb = ub/cw = 1.5, and bulk Reynolds number Reb = 2hρbub/µw = 6000, where

ub and ρb are the bulk channel velocity and density, cw is the speed of sound evaluated at the wall, and h is the

channel-half width. Supersonic channel flow is a common prototype of compressible wall-bounded turbulence, and
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Case M∞ CD −Cpbase St0 ∆tavu∞/D

URANS 0.1 0.28 0.35 - 220

DES 0.1 0.35 0.44 0.31 150

URANS [47] - 0.40 0.41 0.31 200

LES [47] - 0.31 0.32 0.35 200

Exp. [48] - 0.24 0.33 0.22 -

Table 3: Main estimated properties for turbulent flow around circular cylinder. URANS and DES are carried out using rhoEnergyFoam in Mode B,

and compared with previous numerical simulations and experimental data. CD and Cpbase are the drag coefficient and the base pressure coefficient,

respectively, St0 = f0D/u0 is the typical Strouhal number, and ∆tav is the time averaging interval.

0 50 100 150
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

θ(deg)

C
p

Figure 6: Numerical simulation of flow around circular cylinder: wall pressure coefficient obtained from rhoEnergyFoam in Mode B with URANS

(solid line and squares) and DES (dashed line with squares), compared with URANS (solid) and LES (dashed) by Catalano et al. [47] and with

experiments by Warschauer and Leene [49] (triangles) and Zdravkovich [50] (circles).

several databases have been developed, spanning a wide range of Reynolds numbers [44, 45, 43]. In this flow case a

Cartesian mesh is used with a resolution fine enough that no artificial diffusion is needed, hence the solver is operated

in Mode A. The mesh spacing is constant in the wall-parallel directions, and an error-function mapping is used to

cluster mesh points towards the walls. As for the boundary conditions, periodicity is enforced in the homogeneous

wall-parallel directions, and no-slip isothermal conditions are imposed at the channel walls. In order to maximize the

spectral resolution in the streamwise direction, all simulations are performed in a convective reference frame [46],

in which the bulk velocity is zero, and computations are initiated with a parabolic velocity profile with superposed

random perturbations, and with uniform values of density and temperature. The results obtained with rhoEnergyFoam

are compared with DNS data obtained with a finite-difference sixth-order accurate energy-preserving solver [43]

(see Tab. 2). Figure 5 compares the mean velocity and the Reynolds stresses distributions in wall units and Favre

density scaling (denoted with tildes), namely friction velocity uτ = (τw/ρw)1/2, and viscous length scale δv = νw/uτ.

The excellent agreement provides convincing evidence for the effectiveness of the solver for DNS of compressible

turbulent flows.

3.4. RANS and DES of flow past circular cylinder

The turbulent flow around a circular cylinder is here numerically studied by means of rhoEnergyFoam in mode B,

through both unsteady Reynolds-averaged Navier-Stokes simulation (URANS) and detached-eddy simulation (DES),

relying on the classical Spalart-Allmaras turbulence model [51] and its DES extension [52], respectively. The free

stream Mach number is M∞ = u∞/c∞ = 0.1, where u∞ and c∞ are the free stream velocity and speed of sound, and

the Reynolds based on the cylinder diameter is ReD = ρ∞u∞D/µw, with ρ∞ the free stream density and µw the wall

viscosity. An O-type mesh is used for DES with Nr×Nθ×Nz = 256×256×48 cells with hyperbolic tangent stretching

towards the wall in a Lr × Lz = 20D× 2D domain, whereas the same mesh with Nz = 1 is used for URANS. The mesh

is stretched towards the cylinder with the first off-wall mesh point at y+ ≈ 150− 200, hence we rely on the use of wall
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Figure 7: Numerical simulation of flow around circular cylinder: mean velocity profiles at x/D = 0.75 (a)-(b) and x/D = 1.5 (c)-(d) for URANS

(solid line with squares) and DES (dashed line with triangles) compared with URANS (solid) and LES (dashed) by Catalano et al. [47].
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Figure 8: Sketch of the computational setup for flow over a forward-facing step [55].

functions for proper wall-treatment [53]. Specifically, Spalding’s equilibrium law-of-the-wall is used [54]. Isothermal

no-slip boundary conditions are imposed at the wall, whereas fixed value/zero gradient boundary conditions are used

for all variables at the inlet/outlet, respectively, with the turbulent viscosity set to µt0 = 3µw.

Table 3 shows the flow parameters used for the simulations, as well as the main flow properties including the drag

and the base pressure coefficient, and the typical nondimensional frequency in the cylinder wake, as estimated from

analysis of the pressure time spectra. The numerical results are compared with previous numerical simulations [47]

and experiments [48]. The main difference with respect to those is the absence of sensible vortex shedding in the

present URANS, which is probably to be traced to the use of wall functions. Shedding is observed in DES, with

global flow parameters in reasonable agreement with other sources. The wall pressure coefficient and the mean

velocity profiles in the cylinder wake are further scrutinized in Figs. 6, 7. Comparison is overall satisfactory for both

the pressure coefficient and the velocity profiles, with the main difference that a longer cylinder wake is observed both

in URANS and DES with respect to the reference numerical simulations of Catalano et al. [47]. Again, this deviation

may be ascribed to imprecise prediction of the separation point caused by approximate wall treatment.

3.5. Supersonic flow over forward-facing step

The study of the inviscid flow over a forward-facing step was originally proposed by Emery [56] to compare shock-

capturing schemes. In particular, we consider the flow configuration used by Woodward and Colella [55], in which

the supersonic flow in a channel at M∞ = 3 faces a step of height 0.2h, where h is the channel height. The total length

of the channel is 3h, the step leading edge is at 0.6h from the inlet and the mesh is uniform, with Nx × Ny = 240 × 80

cells in the coordinate directions (see Fig. 8). Slip boundary conditions are imposed at the top and lower walls, and

all variables are extrapolated at the outlet.

For this test case the solver is run in Mode C, with threshold value of the shock sensor θ∗ = 0.05 and ku = 0.25,

rather than the value suggested by Liou [57], as we observed a smoother shock front in this case. Fig. 9 shows Mach

number contours for rhoEnergyFoam and rhoCentralFoam compared with the reference solution from Woodward

and Colella [55]. Inspection of the shock pattern shows that, despite qualitative similarities, rhoEnergyFoam delivers

additional flow details which are barely visible with rhoCentralFoam. In particular the slip line issuing from the

quadruple point near the top wall in Fig. 9 is evanescent in rhoCentralFoam, because of its higher numerical diffusion.

Quantitative differences are also found in the prediction of the Mach stem at the step wall, which is much taller in

rhoCentralFoam. Figure 10 shows contours of the shock sensor corresponding to the field shown in Fig. 9(a), which

highlights regions in which the convective diffusive flux is activated (θ ≥ 0.05). This is a convincing confirmation that

numerical diffusion is only activated in close vicinity of shocks.

3.6. Transonic flow over the ONERA M6 wing

Results of numerical simulations of the inviscid flow past the ONERA M6 wing [58] are reported here, at free

stream Mach number M∞ = 0.8395, and angle of attack α = 3.06◦. An unstructured mesh including 341797 tetra-

hedral cells is used (see Fig. 11), within an outer computational box of size Lx × Ly × Lz = 10c × 10c × 5c, where c
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Figure 9: Supersonic flow past forward-facing step at M∞ = 3. 30 Mach number contours are shown in the range −0.92 ≤ M ≤ 2.86 (color scale

from blue to red) for rhoEnergyFoam (a), rhoCentralFoam (b) and Woodward and Colella [55] (c).

Figure 10: Supersonic flow past forward-facing step at M∞ = 3: contours of shock sensor, as defined in Eqn. 8. 24 levels are shown in the range

0.05 ≤ θ ≤ 1, corresponding to the flow field shown in Fig. 9(a). Colors from light to dark, values below 0.05 have been blanked.
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(a) (b)

Figure 11: Unstructured mesh around the ONERA M6 wing (a), and computed pressure field with superposed iso-surface of shock sensor (θ = 0.6,

in red) (b). 32 pressure contours are shown, in the range 0.2 ≤ p/p∞ ≤ 1.3 (color scale from blue to red).

(a) (b)

Figure 12: Flow around ONERA M6 wing: computed pressure contours on the wing surface for rhoEnergyFoam (a) and rhoCentralFoam (b). 32

levels are shown in the range 0.3 ≤ p/p∞ ≤ 1.3 (color scale from blue to red). The dashed lines denote the wing sections used in Fig. 13.
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Figure 13: Flow around ONERA M6 wing: pressure coefficient (Cp = (p − p∞)/(1/2ρ∞u2
∞)) at various wing sections (see Fig. 12): (a) z/b = 0.2,

(b) z/b = 0.65, (c) z/b = 0.8, (d) z/b = 0.9, for rhoEnergyFoam (solid lines) rhoCentralFoam (dashed lines) and experimental data [58] (square

symbols). xl and xt denote the coordinates of the leading edge and trailing edge of each wing section, respectively.

Case Cl Cd

rhoEnergyFoam 0.713 0.0133

rhoCentralFoam 0.725 0.0185

Experiment [59] 0.743 0.0127

RANS [60] 0.717 0.0133

Table 4: Lift and drag coefficient of RAE 2822 airfoil at M∞ = 0.725, Rec = 6.5 × 106, α = 2.31◦, as predicted by rhoEnergyFoam and

rhoCentralFoam, compared with experimental data [59] and RANS simulation [60].

is the chord at the wing root section. Numerical simulations have been carried out using both rhoCentralFoam and

rhoEnergyFoam in Mode C, and compared with experimental data. Figure 11b shows the pressure field computed with

rhoEnergyFoam with an overlaid iso-surface of the shock sensor, which highlights the presence of two shock waves,

a primary one roughly at the middle of the wind chord, and a secondary one close to the leading edge, eventually

coalescing near the wing tip.

Figure 12 shows the computed pressure field on the suction surface of the wing for rhoEnergyFoam (panel a) and

rhoCentralFoam (panel b), which highlights qualitative differences between the two solvers. Although the main flow

features are captured by both solvers, it seems that the leading-edge shock is much fainter in rhoCentralFoam, and

the primary shock is much thicker especially towards the wing root, owing to the diffusive nature of the solver. A

more quantitative evaluation is carried out in Fig. 13, where we compare the computed distributions of the pressure

coefficient with the experimental data of Schmitt and Charpin [58], at the four wing sections indicated with dashed

lines in Fig. 12. At the innermost section (panel a) the primary shock is is rather weak, and barely apparent in rhoCen-

tralFoam, whereas rhoEnergyFoam yields favourable prediction of both shock strength and position. At intermediate

sections (panels b,c) both shocks are present, which are again correctly captured by rhoEnergyFoam, whereas rhoCen-

tralFoam shows excessive smearing. At the outermost section (panel d) the primary and the secondary shock merge

into a single stronger shock, whose amplitude is well captured by rhoEnergyFoam.
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(a) (b)

Figure 14: RANS of flow over RAE 2822 airfoil: computed pressure field as predicted by rhoEnergyFoam (a) and rhoCentralFoam (b). 24 contour

levels are shown in the range 0.6 ≤ p/p∞ ≤ 1.4, in color scale from blue to red.
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Figure 15: RANS of flow over RAE 2822 airfoil: pressure coefficient predicted by rhoEnergyFoam (solid lines), rhoCentralFoam (dots), compared

with previous RANS [61] (dashed lines) and experimental data [59] (square symbols).
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3.7. Transonic flow over the RAE-2822 airfoil

The transonic flow past RAE 2822 airfoil [61] has been simulated through RANS, using the standard Spalart-

Allmaras model. The flow conditions correspond to those of test case 6 in the experiments of Cook et al. [59], namely

free stream Mach number M∞ = 0.729, chord Reynolds number Rec = ρ∞u∞c/µ∞ = 6.5 × 106, and angle of attack

α = 2.31◦. A C-type structured mesh is used which includes 369 × 256 cells, with hyperbolic tangent stretching

towards the wall. The far field boundary is at approximately 20 chords from the wall, where inlet/outlet boundary

conditions are enforced, whereas isothermal no-slip boundary conditions are imposed at the airfoil wall. The distance

of the first mesh point off the wall ranges between ∆+y = 25 − 180, hence the wall is modeled through Spalding’s wall

function. Table 4 shows the lift and drag coefficient predicted by rhoEnergyFoam in Mode C and rhoCentralFoam, as

compared with experimental data [59] and simulation [60]. The agreement is quite good, with some overestimation

of drag from rhoCentralFoam. The computed pressure fields are compared in Fig. 14, which shows the presence of a

single normal shock on the suction side, and very minor differences between the two solvers. Detailed comparison of

the pressure coefficient with experiments [59] and simulations [61], shown in Fig. 15, is satisfactory for both solvers,

although in this case rhoCentralFoam seems to be closer to experiments, and rhoEnergyFoam closer to previous

simulations.

4. Conclusions

A low-dissipative numerical strategy has been developed and tested for the accurate simulation of smooth and

shocked compressible flows, with an eye to industrial applications. The algorithm relies on an underlying energy-

consistent non-diffusive numerical flux, which is locally augmented with the diffusive part of the AUSM numerical

flux, in an amount controlled by the degree of smoothness of the flow on the selected computational mesh. The main

novelties of the approach can be summarized as follows: i) the use of the triple splitting in Eqn. (6), that was never

considered in finite-volume algorithms; ii) the separation of the AUSM diffusive flux into ‘pressure’ and ‘convective’

parts, which guarantees minimal levels of numerical diffusion in shock-free problems; iii) the introduction of three

modes of solver operation, based on the intent of the simulation. We have found that fully resolved simulations (i.e.

DNS) can be handled with no numerical diffusion (Mode A). Smooth unresolved flows (i.e. DES and RANS) require

some small amount of numerical diffusion, granted by the pressure diffusive flux of AUSM (Mode B). Shocked flows

require further addition of the convective diffusive flux of AUSM for stability (Mode C). The use of low-dissipative

schemes for turbulent flow simulations is certaily advisable, as it avoids overdamping of turbulence fluctuations, al-

though reduced numerical diffusion may spoil numerical stability. We have found that the use of background numeri-

cal diffusion in the form of the AUSM pressure flux modulate by the local shock sensor (i.e. Eqn. (9)) has a stabilizing

effect similar to an embedded filter, which is locally activated whenever numerical oscillations are sensed. Hence,

good stability properties are recovered on unstructured meshes without indiscriminate use of artificial diffusion. For

the sake of showing simplicity and generality, the method has been implemented in the OpenFOAM library. A broad

range of academic-to-applicative test cases has been presented to highlight the favourable features of the solver. The

simulation of homogeneous isotropic turbulence and Taylor-Green flow show that the solver operated in Mode A is

capable of discretely preserving the discrete total kinetic energy from convection in the inviscid limit, whereas the

baseline version of the OpenFOAM solvers herein tested cannot. This features, besides being essential for DNS, are

also appealing for URANS and DES. The applicative test cases herein presented in fact support the statement that the

use of low-diffusive numerics yields better representation of the flow physics, in contrast to highly diffusive schemes

which tend to blur many features of the flow field. This is reflected in improved quantitative prediction of local and

global force coefficients in applied aerodynamics test cases. The OpenFOAM source code with accompanying docu-

mentation is available at the web page http://newton.dima.uniroma1.it:/rhoenergyfoam.
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5. Appendix

Referring to Fig. 1, the AUSM convective and pressure flux to be used in Eqn. (5) are given below, based on the

AUSM+-up formulation [57]

f̂AUS M
ON = −cON

2

[(

1

2
δmON − |MON |

)

ϕL +

(

1

2
δmON + |MON |

)

ϕR

]

, (13)

p̂AUS M
ON = −1

2
δpON , (14)

MON =
MR + ML

2
− 1

2
δmON , (15)

δmON = [∆M(MR) − ∆M(ML)] − 2Mp, ∆M(M) =M+(4)(M) −M−(4)(M), (16)

Mp = −
kp

fa
max (1 − σM

2
, 0)

2 (pR − pL)

(ρL + ρR)c2
ON

. (17)

The speed of sound at the cell interface is evaluated as cON = (cL + cR)/2 and M
2
=

(

un
2
L
+ un

2
R

)

/(2c2
ON

), M2
0
=

min (1,max (M
2
,M2
∞)), fa(M0) = M0(2 − M0), with kp = 0.25, ku = 0.75, σ = 1. The diffusive pressure flux is given

by

δpON =
[

pR∆P(MR) − pL∆P(ML)
] − 2Mu, ∆P(M) = P+(5)(M) − P−(5)(M), (18)

where

Mu = −
1

2
kuP+(5)(ML)P−(5)(MR) (ρL + ρR) ( facON) (unR − unL) , (19)

The subscript L,R refers to the two sides of the cell interface, which have have been reconstructed through the Minmod

limiter, also available in the OpenFOAM library. We further define the split Mach numbers M(m) as m-th degree

polynomials

M±(1)(M) =
1

2
(M ± |M|) , (20)

M±(2)(M) = ±1

4
(M ± 1)2 , (21)

M±(4)(M) =















M±
(1)

(M) i f |M| ≥ 1

M±
(2)

(M)
(

1 ∓ 16βM∓
(2)

(M)
)

i f |M| < 1.
(22)

P±
(5)

is also defined in terms of the split Mach numbers, as follows

P±(5)(M) =















1
M
M±

(1)
(M) i f |M| ≥ 1

M±
(2)

(M)
[

(2 ± −M) ∓ 16αMM∓
(2)

(M)
]

i f |M| < 1.
(23)

Following Liou [57], we set α = 3/16(−4 + 5 f 2
a ), β = 1/8.
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