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Abstract

The effect of Reynolds and Mach number variation in compressible isothermal
channel flow is investigated through a series of direct numerical simulations
(DNS), at bulk Mach number Mb = 1.5, 3 and bulk Reynolds number up
to Reb = 34000, which is sufficient to sense sizeable high-Reynolds-number
effects not reached before in this type of flow. Dedicated incompressible DNS
are also performed at precisely matching Reynolds number, to directly gauge
the performance of compressibility transformations for the mean velocity pro-
files and Reynolds stresses. As in previous studies, we find inaccuracy of the
classical van Driest transformation to remove effects of variable density and
viscosity, especially at low Reynolds number. On the other hand, almost
perfect matching of incompressible mean velocity and Reynolds stress distri-
butions is recovered throughout the wall layer by using a recently introduced
transformation [1, 2], the only remaining effect of compressibility being the
increase of the streamwise turbulence intensity peak with the Mach number.
Temperature/velocity relations are scrutinized, with the main finding that a
recent relation by Zhang et al. [3], which explicitly accounts for finite wall
heat flux, is more accurate than the classical Walz relation. The size of the
typical turbulent eddies is studied through spanwise spectral densities of the
velocity field, which support validity of a scaling based on the local mean
shear and the local friction velocity, with the main conclusion that the ac-
tual size of the eddies does not vary with the Mach number, at a fixed outer
wall distance.
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1. Introduction

Compressible wall-bounded turbulent flows are of obvious importance in
aerospace applications and have been extensively studied in the past, al-
though some basic issues as Mach and Reynolds number effects on the mean
velocity profile and on the Reynolds stresses distribution are not yet fully
settled. Most early studies were based on experimental approaches, as thor-
oughly reviewed by Bradshaw [4], Smits and Dussauge [5], Gatski and Bon-
net [6]. However, growth of available computational power has recently made
the numerical solution of the full compressible Navier-Stokes equation feasi-
ble, and direct numerical simulation (DNS) has become an important tool in
turbulence research. The effects of finite flow compressibility on turbulence
have been traditionally divided into indirect effects due to mean density and
temperature variations, and genuine effects caused by dilatational velocity
fluctuations and thermodynamic fluctuations. Morkovin [7] postulated that
for non-hypersonic boundary layers (say,M < 5), genuine effects of compress-
ibility are negligible, hence the mean flow profiles are expected to collapse to
the corresponding incompressible distributions, provided mean density and
viscosity variations are suitably taken into account. Morkovin’s hypothe-
sis also subtends earlier theoretical findings, as the celebrated van Driest
transformation for the mean velocity profile [8], and led to relations between
temperature and velocity fluctuations for adiabatic boundary layers, collec-
tively known as strong Reynolds analogies (SRA) [7, 9, 10]. Many studies of
compressible boundary layers support the validity of Morkovin’s hypothesis,
at least for adiabatic walls, whereas the original SRA relationships turned
out not be very robust [11, 12, 3].

Planar channel is the simplest prototype of wall-bounded internal flows.
Since the pioneering work of Kim et al. [13], many DNS studies of incom-
pressible channel flows have appeared, and Reynolds numbers have been
reached at which a sizeable layer with near-logarithmic variation of the
mean velocity emerges [14, 15, 16]. Pioneering studies of turbulent chan-
nel flow at supersonic conditions (Mb = 1.5, Reb = 3000 being the bulk
Mach ad Reynolds number, respectively) were carried out by Coleman et al.
[17], Huang et al. [10]. Those authors studied compressible channel flows be-
tween isothermal walls, in which the wall is necessarily cooler than the bulk
fluid, and found that the van Driest-transformed velocity follows only ap-
proximately the incompressible law-of-the-wall, with differences attributed
to low-Reynolds-number effects. Those authors also showed that density
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and temperature fluctuations are indeed small as compared to their mean
values, thus substantiating Morkovin’s hypothesis. The turbulent stresses
were found to collapse fairly well on incompressible data when scaled with
the mean density ratio, but better agreement was observed when ‘semi-local’
units are used, based on a local friction velocity and viscous length scale.
Lechner et al. [18] reproduced the flow case considered by Coleman et al.
[17] using a pressure-velocity-entropy formulation with governing equations
cast in characteristic form, and discretized with fifth-order compact upwind
formulas. Good agreement was observed with the results of Coleman et al.
[17], and higher values of the density-scaled normal Reynolds stresses were
observed as compared to the incompressible case, whereas the transformed
turbulent shear stress was found to be lower. Morinishi et al. [19], Tamano
and Morinishi [20] carried out DNS of compressible channel flow between
both isothermal and adiabatic walls using a Fourier/Galerkin B-spline dis-
cretization [21], confirming the validity of Huang’s semi-local scaling for the
turbulent stresses. Foysi et al. [22] performed DNS spanning bulk Mach
numbers in the range between 0.3 and 3.5. Consistent with previous works,
they found that the density-scaled turbulent stresses collapse on the incom-
pressible distributions sufficiently far from the wall when reported in outer
scaling, whereas Huang’s semi-local scaling yields better accuracy than van
Driest in inner scaling. Brun et al. [23] developed an extensive large-eddy
simulation database of compressible channel flows, and noticed that as the
Mach number is increased for given bulk Reynolds number the flow tends to
relaminarize, although the friction Reynolds number increases, thus raising
the important question of which is the relevant Reynolds number for compar-
ing flow cases across the Mach number range. Brun et al. [23] also proposed
a modified form of mean velocity scaling which explicitly takes into account
mean viscosity variations, and which was found to yield better collapse on
incompressible data than semi-local scaling. Wei and Pollard [24, 25] used
a discontinuous Galerkin solver to develop a DNS dataset of compressible
channel flows spanning the bulk Mach number range between 0.2-1.5. As
in previous studies, they found that as the bulk Mach number increases the
transformed turbulent stresses do not follow the incompressible profiles when
reported in wall units. In a recent work, Trettel and Larsson [1, 2] further
investigated failure of the van Driest transformation in the case of cold walls.
They showed that the semi-local scaling of Huang et al. [10] is actually rooted
in arguments of mean momentum balance, and they derived a novel velocity
transformation which by construction satisfies universality of the turbulent
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stresses. The novel transformation was shown to yield satisfactory agreement
of the mean velocity profiles with incompressible distributions in a reasonably
wide range of Reynolds and Mach numbers. One of the uses of ‘compressibil-
ity transformations’ consists in the derivation of predictive relations for the
friction coefficient, such as the popular van Driest II transformation [26]. In
order to derive such friction relations a temperature-velocity relation is also
needed. For that purpose, one popular choice is Walz relation [27], which
has been found to work well for adiabatic boundary layers [28, 29]. An em-
pirical correction to Walz formula was proposed by Duan and Martin [30],
and generalized by Zhang et al. [3], to explicitly account for finite wall heat
flux.

A frequently debated issue in the compressible flow community is the
effect of flow compressibility on the typical length scales in wall turbu-
lence [31, 5]. Although there is a general consensus that the integral scales
of fluid motion sufficiently away from the wall do not vary substantially with
the Reynolds number, the dependence on the Mach number is still largely
unclear. Furthermore, most available experimental data only refer to the
streamwise length scales, which can be easily estimated from one-point mea-
surements, upon use of Taylor’s hypothesis. In this respect, Demetriades and
Martindale [32] found that the streamwise integral length scales in a Mach 3
boundary layer are about half as in incompressible boundary layers. Smits
et al. [33] also observed that the streamwise length scales sensibly decrease
with the Mach number, whereas the spanwise length scales are almost un-
changed. On the other hand, Spina et al. [31] claimed that the integral length
scales increase with the Mach number both in inner and outer units, being
weakly affected by the Reynolds number. Recent measurements by Ganap-
athisubramani et al. [34] at M = 2 seem to suggest substantial increase of
the eddy size in both the streamwise and in the spanwise direction with the
Mach number, whereas recent DNS [12] at M = 2 support insensitivity on
the Mach number, at least for adiabatic boundary layers.

To shed some light on the open issues outlined above, we have developed
a novel database of compressible channel flow in the range of bulk Mach
numbers from Mb = 1.5 to 3, and bulk Reynolds numbers up to Reb ≈ 34000,
which significantly extends the range of previous DNS. In order to precisely
gauge the importance of compressibility effects and directly assess the validity
of the compressibility transformations, a series of companion incompressible
DNS have been performed so as to exactly match the relevant Reynolds
number (see the later discussion), thus avoiding ambiguities/uncertainties of
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previous studies.

2. DNS setup

We solve the Navier-Stokes equations for a perfect heat-conducting gas

∂ρ

∂t
+

∂ρui

∂xi

= 0, (1a)

∂ρui

∂t
+

∂ρuiuj

∂xj

= −
∂p

∂xi

+
∂σij

∂xj

+ fδi1, (1b)

∂ρE

∂t
+

∂ρujH

∂xj

= −
∂qj
∂xj

+
∂σijui

∂xj

+ fu1, (1c)

where ui, i = 1, 2, 3, is the velocity component in the i-th direction, ρ the
density, p the pressure, E = cvT +uiui/2 the total energy per unit mass, and
H = E + p/ρ is the total enthalpy. γ = cp/cv = 1.4 is the specific heat ratio.
qj and σij are the components of the heat flux vector and the viscous stress
tensor respectively,

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

−
2

3

∂uk

∂xk

δij

)
, (2)

qj = −k
∂T

∂xj

, (3)

where the dependence of the viscosity coefficient on temperature is accounted
for through Sutherland’s law and k = cpµ/Pr is the thermal conductivity,
with Pr = 0.72. The forcing term f in equation (1b) is evaluated at each
time step in order to discretely enforce constant mass-flow-rate in time, and
the corresponding power spent is added to the right-hand-side of the total
energy equation. The nonlinear terms in the Navier-Stokes equations are
discretized using central sixth-order locally conservative, energy-consistent
formulas which guarantee that the total kinetic energy is discretely conserved
in the limit case of inviscid incompressible flow [35]. This approach avoids
the introduction of any artificial viscosity for numerical stabilization, as done
in most existing compressible flow solvers. The viscous terms are expanded
to Laplacian form and also approximated with sixth-order formulas, to avoid
odd-even decoupling phenomena. Time advancement is carried out by means
of an explicit third-order low-storage Runge-Kutta algorithm.
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Figure 1: Distribution of collocation points in wall-normal direction. Walls are made
to coincide with the intermediate nodes j = 1/2, j = Ny + 1/2, where the numerical
convective fluxes are set to zero.
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The DNS are carried out in a rectangular box whose size in the x, y, z
coordinate directions is 6πh× 2h× 2πh, where h is the channel half-height.
This relatively large size as compared to previous studies is dictated by the
need to accommodate the large eddies which become energetically relevant at
sufficiently high Reynolds number [14, 15]. The mesh spacing is constant in
the wall-parallel directions, and an error-function mapping is used to cluster
mesh points towards the walls. As for the boundary conditions, periodicity is
enforced in the homogeneous wall-parallel directions, and no-slip isothermal
conditions are imposed at the channel walls. In this respect, we note that the
presence of the walls in y direction may lead to failure in the conservation
of mass in co-located flow solvers [17, 19, 17], which is typically fixed by
adding a source term to the continuity equations at the wall nodes in such a
way that the integrated density remains discretely constant in time. In this
work we prefer to stagger the first node off the wall in such a way that the
latter coincides with an intermediate node (see figure 1), where the convective
fluxes are identically zero. Hence, correct telescoping of the numerical fluxes
is guaranteed, and no net mass variation can occur. A further benefit of
this approach is that, for given distance of the first grid point from the wall,
the maximum allowable time step associated with the vertical mesh spacing
is doubled. In order to maximize the spectral resolution in the streamwise
direction, all simulations are performed in a convective frame of reference [36],
in which the bulk velocity is zero. All computations are initiated with a
parabolic velocity profile with superposed random perturbations, and with
uniform values of density and temperature.

Both Reynolds (φ = φ + φ′) and Favre (φ = φ̃ + φ′′, φ̃ = ρφ/ρ) decom-
positions will be used in the following, where the overline symbol denotes
averaging in the homogeneous space directions and in time. Bulk Reynolds
and Mach number are defined as Reb = 2ρbubh/µw, Mb = ub/cw, where
ρb = 1/V

∫
V
ρdV is the bulk density, and ub = 1/(ρbV )

∫
V
ρudV is the bulk

velocity in the channel (both exactly constant in time), and µw and cw are
the dynamic viscosity coefficient and the speed of sound at the wall temper-
ature, respectively. For notational clarity, components of the Reynolds stress

tensor are denoted as τij = ũ′′

i u
′′

j , and quantities made nondimensional with

respect to the wall friction velocity (uτ =
√
τw/ρw) and the viscous length

scale (δv = νw/uτ , where ν = µ/ρ is the kinematic viscosity), are denoted
with the ‘+’ superscript. The friction Reynolds number is defined as the
ratio of outer to viscous length scales, hence Reτ = h/δv. Details on the
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Case Reb Mb Reτ ReτH ReτB Nx Ny Nz ∆x+ ∆z+ Mτ −Bq

CH01 5790 0.1 180 180 180 384 128 192 8.8 5.9 0.0063 9.7e-6

CH15A 6000 1.5 215 141 169 512 128 256 8.0 5.2 0.079 0.048

CH15B 15334 1.5 500 333 395 1024 256 512 9.2 6.1 0.072 0.042

CH15C 34000 1.5 1015 677 802 2048 512 1024 9.3 6.2 0.065 0.038

CH3 9760 3. 448 142 233 1024 256 512 8.2 5.5 0.11 0.14

CH15M 6000 1.5 218 141 169 120 180 120 23 7.6 0.079 0.048

CH15MF 6000 1.5 215 141 169 256 128 128 10 7.0 0.079 0.048

Table 1: Setup of compressible channel DNS. The computational box size is 6πh×2h×2πh
for all flow cases, except case CH15M, which reproduces the DNS of Morinishi et al. [19],
and CH15MF with improved spatial resolution, in which the box size is 4πh×2h×4/3πh.
Ni and ∆x+

i are the number of points and the mesh spacing in the i-th coordinate direction,
respectively. Mτ = uτ/cw is the friction Mach number, and Bq = qw/(ρwCpuτTw) is
the heat flux coefficient. Reτ I is the equivalent friction Reynolds number for Huangs’
transformation (H), and Brun’s transformation (B), as defined in equation (15).

Case Reb Reτ Nx Ny Nz ∆x+ ∆z+

INC1 4272 140 384 128 192 6.9 4.6

INC2 5248 169 384 128 192 8.3 5.5

INC3 5790 180 384 128 192 8.8 5.9

INC4 7082 222 384 128 192 11 7.3

INC5 10074 299 768 192 384 7.3 4.9

INC6 13774 393 1024 256 512 7.2 4.8

INC7 20062 550 1024 256 512 10 6.7

INC8 25534 673 2048 512 1024 6.2 4.1

INC9 30800 796 2048 512 1024 7.3 4.9

INC10 39600 999 2048 384 1024 9.2 6.1

Table 2: Setup of incompressible channel DNS. The computational box size is 6πh× 2h×

2πh for all flow cases. Flow cases INC7-INC10 are taken from the dataset of Bernardini
et al. [15], whereas all other simulations have been performed in the present study.

computational arrangement of the DNS are given in table 1. For the sake
of comparison, a set of incompressible channel DNS have been carried out
so as to accurately reproduce the relevant friction Reynolds number for fair
comparison of incompressible and compressible flow statistics (see the later
discussion), whose details are reported in table 2. The numerical algorithm
used for the incompressible DNS is the same as in previous studies from our
group [15].

The compressible solver is first tested in the nearly incompressible regime
(Mb = 0.1, corresponding to flow case CH01 of table 1), and compared with
strictly incompressible data (flow case INC3 of table 2) in figure 2. Excellent
agreement of the mean velocity and Reynolds stress distributions is recovered.
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Figure 2: Performance in near-incompressible flow conditions: mean velocity profile (a)
and Reynolds stresses (b) for flow case CH01 (circles) and INC3 (dots) (see tables 1 and
2).

The performance in the supersonic regime is tested by comparing our DNS
data with reference data of Morinishi et al. [19], at Mb = 1.5, Reb = 6000.
Three DNS are presented in figure 3, one using the same set-up as all other
DNS in terms of box size and resolution (CH15A), one in which the same
box size and mesh resolution as Morinishi et al. [19] is used (labeled as
CH15M), and one with same box size as Morinishi et al. [19], but improved
resolution (labeled as CH15MF). Overall, very similar results are obtained
for the various flow statistics, except for the peak of the streamwise Reynolds
stress, which is known to be quite sensitive to mesh resolution. It appears
that when using the same mesh resolution we very nearly match the results
of Morinishi et al. [19]. However, refining the mesh has some impact on the
Reynolds stress peak, which is underestimated by about 5% in the coarser
computations. On the other hand, the effect of enlarging the computational
box seems to be marginal at this modest Reynolds number.

3. Compressibility transformations

Several propositions have been made in the past to remove compress-
ibility effects from statistics of wall-bounded flows, starting from analytical
transformations of the laminar boundary layer equations [37]. In laminar
boundary layer flow, the Howarth-Dorodnitsyn transformation exactly ac-
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Figure 3: Comparison with DNS data of Morinishi et al. [19] (circles): mean velocity
(a), van Driest-transformed velocity (b), mean temperature (c), and normal Reynolds
stresses (d), for flow cases CH15A (solid), CH15M (triangles), CH15MF (dashed) (see
table 1), The thick gray lines in panel (b) denote the compound law-of-the-wall u+ = y+,
u+ = 5.2 + log y+/0.41.

Transformation Wall distance (fI) Mean velocity (gI) Stresses (ϕI)

Howarth [37] fL = 1

N gL = 1 NA

Viscous sublayer fV = 1 gV = RN NA

van Driest [8] fD = 1 gD = R1/2 ϕD = R

Huang et al. [10] fH = d

dy

(
y

R1/2N

)
gH = R1/2

(
1 + ũ

R
dR
dy

dy
dũ

)
ϕH = R

Brun et al. [23] fB = 1

RN gB = 1

R1/2N
y
yB

ϕD = 1

RN2

(
y
yB

)2

Trettel and Larsson [1] fT = d

dy

(
y

R1/2N

)
gT = RN d

dy

(
y

R1/2N

)
ϕT = R

Table 3: Transformation rules for wall distance, mean velocity and Reynolds stresses,
according to equations (11), (22), with N = ν/νw, R = ρ/ρw. See equation 11 for the

definition of the mapping functions fI , gI .
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counts for variations of mean density and temperature through re-scaling of
the wall-normal coordinate thus reducing the transformed boundary layer
equations to the incompressible ones. The same mapping does not directly
apply to channel flow as the momentum equation is not homogeneous, re-
ducing to

d

dy

(
µ
du

dy

)
+

τw
h

= 0. (4)

A solution of equation (4) can be found by introducing an effective velocity

uV =

∫ u

0

µ

µw

du, (5)

which satisfies the incompressible Poiseuille profile. The scenario is much
more complicated in turbulent wall layers, in which no analytical transfor-
mation can be found to rigorously transform the governing equations to the
incompressible ones. The only provable result pertains to the viscous sub-
layer, for which the mapping (5) still applies [5].

As regards the outer layer, the classical analysis is based on the work of
van Driest [8]. Mean momentum balance in turbulent channel flow requires

µ
dũ

dy
− ρ̄ũ′′v′′ = ρwu

2
τ (1− η) , (6)

where η = y/h is the outer-scaled vertical coordinate. Away from the wall
molecular viscosity is negligible, and further assuming η << 1, constancy of
the turbulent stress follows, hence

−ũ′′v′′ ≈

(
ρw
ρ

)
u2
τ , (7)

which shows that ‘compressible’ stresses should be scaled by the local mean
density to recover the incompressible behavior. Mixing length modeling of
the turbulent shear stress further leads to the classical overlap-layer equation

duD

dy
=

uτ

ky
, (8)

in terms of the van Driest transformed velocity, defined as

uD =

∫ ū

0

(
ρ̄

ρ̄w

)1/2

dũ. (9)
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Integration of (8) directly leads to a logarithmic layer for the transformed ve-
locity field with the same slope as in the incompressible case, however with
an additive constant which may in general vary with both Reynolds and
Mach number. It should be noted that, assuming for simplicity a power-law
expression for the molecular viscosity of the type µ ∼ T 0.76, it follows that
the integrand of the viscous sublayer transformation (5) scales as (ρw/ρ)

0.76,
whereas in van Driest outer-layer transformation the scaling is about the
inverse. Hence, it appears that van Driest transformation cannot collapse
the entire wall layer, except for the case of an adiabatic wall, since
ρ/ρw ≈ 1 in the near-wall region [12]. This condition is asymptoti-
cally approached in channel flows as Reb → ∞, since the heat flux
coefficients drops to zero (see table 1), hence it may be expected
that the van Driest transformation recovers its accuracy in this
limit.

Failure of van Driest transformation was highlighted in previous works,
in which alternative transformations were proposed to scale the whole inner
layer. Empirical evidence [10] suggested that normalizing the mean velocity
and Reynolds stress profiles with respect to suitable semi-local wall units
based on the local density and viscosity, defined as

u∗

τ =
√
τw/ρ, δ∗v = ν/u∗

τ , (10)

yields better collapse of the flow statistics across the Mach number range.
It can be readily shown [1] that using the local wall units defined in equa-
tion (10) is equivalent to introducing a mapping for the mean velocity and the
wall distance, as given in equation 11 below. Brun et al. [23] pointed out the
importance of accounting for mean viscosity variations in the presence of high
Mach number and/or hot/cold walls. Using arguments strictly applicable to
the viscous sublayer, those authors proposed a set of transformation rules
which includes a wall-normal stretching similar to the Howarth-Dorodnitsyn
transformation.

To gauge the validity of the various transformation rules, we preliminarily
note that all of them can be cast in terms of mapping functions fI , gI for wall
distance and mean velocity, defined as

yI =

∫ y

0

fI dy, uI =

∫ ũ

0

gI dũ, (11)

where uI and yI denote the ‘incompressible’ values obtained from various
transformations. Introducing these transformations into equation (6), and
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assuming that the turbulent shear stress distribution obeys van Driest scal-
ing, namely

−ρũ′′v′′ = ρwτI(yI), (12)

we find
µ

µw

fI
gI

du+

I

dy+I
+ τ+I = (1− η) . (13)

Comparing equation (13) with its incompressible counterpart then directly
yields

µ

µw

fI
gI

= 1, (14)

which may be regarded as a constraint which defines a class of compressibility
transformations which satisfy universality of the turbulent stresses.

The mapping functions for wall distance and mean velocity corresponding
to various compressibility transformations are listed in table 3. Of course, the
only exhisting transformation which satisfies the constraint given by equa-
tion (14) is that for the viscous sublayer. A novel velocity transformation
which also satisfies (14), with the additional constraint that the transformed
velocity profile collapses to the universal incompressible profile in the over-
lap layer, has been recently derived by Trettel and Larsson [1], and it is also
listed in table 3. It is interesting to note that the transformation rule for the
wall-normal distance is identical to Huang’s transformation (hence yT = yH).

An important issue related to compressibility transformations is the def-
inition of a suitable Reynolds number to compare the flow statistics across
Mach numbers and with incompressible data. For instance, Coleman et al.
[17] compared compressible channel statistics with the incompressible DNS of
Kim et al. [13] at approximately the same friction Reynolds number, whereas
Morinishi et al. [19] used a friction Reynolds number defined with the local
viscous length scale at the channel centerline. We argue that the answer to
the ‘most relevant’ Reynolds number should be given a-posteriori, based on
the most successful transformation. For that purpose, we define a friction
Reynolds number for the generic transformation as the ratio of the trans-
formed wall-normal coordinate at the channel centerline to the viscous length
scale evaluated at the wall, hence

Reτ I = yI(h)/δv, (15)

which clearly reduces to the conventional definition in the incompressible
limit. In the following, in an attempt to evaluate the various compressibil-
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Figure 4: Assessment of laminar scaling, as from equation (5): (a) laminar flow atMb = 1.5
(triangles) and Mb = 3 (circles), compared with the parabolic Poiseuille profile (gray solid
line); (b) comparison of flow case CH15C (triangles) with INC10 (dotted lines).

ity transformations as fairly as possible, we compare the inner-scaled trans-
formed distributions of the velocity statistics with incompressible DNS data
at exactly the same relevant friction Reynolds number.

3.1. Mean velocity

As a preliminary check, in figure 4a we evaluate the viscous sublayer trans-
formation given in equation (5) for the case of compressible laminar flow at
Mb = 1.5 and Mb = 3. It is clear that equation (5) effectively maps the
compressible velocity profiles to the incompressible parabolic Poiseuille dis-
tribution. Figure 4b further shows equation (5) applied to flow case CH15C.
In this case, satisfactory collapse to the incompressible distribution is recov-
ered in the viscous sublayer up to y+ ≈ 10, with obvious deviations farther
from the wall.

The inner-scaled velocity distributions obtained from application of the
compressibility transformations listed in table 3 are compared in figures 5-8
with incompressible DNS data at the same relevant friction Reynolds num-
ber. For reference, the alleged universal incompressible wall law is also shown.
As also found in previous studies [17, 5], the van Driest transformation (fig-
ure 5) visibly undershoots the viscous sublayer linear distribution, especially
in flow case CH3, and it overshoots the incompressible velocity distribution
away from the wall, the crossing occurring at y+ ≈ 30. The van Driest trans-
formation yields the correct slope of the log law in the overlap layer, but
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Figure 5: Mean velocity profiles transformed according to van Driest [8] (solid lines) for
flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with incompressible
DNS at matching ReτD (INC4, INC7, INC10, INC6, respectively, plotted with dotted
lines). The thick gray lines denote the compound law-of-the-wall u+ = y+, u+ = 5.2 +
log y+/0.41.
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Figure 6: Mean velocity profiles transformed according to Huang et al. [10] (squares) for
flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with incompressible
DNS at matching ReτH (INC1, INC5, INC8, INC1, respectively, plotted with dotted lines).
The thick gray lines denote the compound law-of-the-wall u+ = y+, u+ = 5.2+log y+/0.41.
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Figure 7: Mean velocity profiles transformed according to Brun et al. [23] (circles) for flow
cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with incompressible DNS at
matching ReτB (INC2, INC6, INC9, INC4, respectively, plotted with dotted lines). The
thick gray lines denote the compound law-of-the-wall u+ = y+, u+ = 5.2 + log y+/0.41.
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Figure 8: Mean velocity profiles transformed according to Trettel and Larsson [1] (di-
amonds) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with
incompressible DNS at matching Reτ T (INC1, INC5, INC8, INC1, respectively, plotted
with dotted lines). The thick gray lines denote the compound law-of-the-wall u+ = y+,
u+ = 5.2 + log y+/0.41.

18



the additive constant is significantly overestimated at low Reynolds number,
whereas it approaches the incompressible value at sufficiently high Reynolds
number, as also noticed by Huang and Coleman [38], Fernholz and Finley
[39], Spina et al. [31], and as probably due to the reduction in the heat flux
coefficient (see table 1).

Unlike van Driest, Huang’s transformation, shown in figure 6, performs
well in the near-wall region, whereas it systematically overshoots the incom-
pressible velocity profile in the outer layer, again approaching the incompress-
ible behavior at sufficiently high Reynolds number. Brun’s transformation
(see figure 7) has an overall similar behavior as van Driest transformation,
although absolute deviations in the outer layer are significantly smaller. The
limitations of earlier transformations are apparently overcome by the trans-
formation by Trettel and Larsson [1] (see figure 8), which yields collapse
to the incompressible distributions across the Reynolds and Mach number
range, throughout the wall layer.

Closer scrutiny of the core part of the flow can be gained by inspecting
the mean velocity profiles in defect form, as given in figure 9. A parabolic
law for the core velocity profile of incompressible channels has recently been
derived by Pirozzoli [40]. The derivation stems from the idea that the outer-
layer turbulent eddies are not directly affected by the presence of the wall,
and their size should hence scale with the channel height and with the typical
eddy velocity scale (namely the friction velocity), whence it follows that the
relevant eddy viscosity is

νt = cµuτh, (16)

where cµ a suitable constant. This reasoning is easily extended to compress-
ible flows on the token that in the presence of mean density variations the
effective velocity scale is u∗

τ (as defined in equation (10)) rather than uτ ,
which yields the eddy viscosity

νt = c∗µu
∗

τh, (17)

where c∗µ might differ from cµ owing to compressibility effects. From equation
(6), neglecting the viscous term and using the eddy viscosity (17), one readily
obtains

dũ+

dη
=

1

c∗µ

(
ρw
ρ̄

)1/2

(1− η) , (18)

from which it follows that the van-Driest-transformed velocity should follow
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Figure 9: Van Driest-transformed defect velocity profiles for flow cases CH15A (a), CH15B
(b), CH15C (c), CH3(d) (solid lines), compared with incompressible data from flow cases
INC1-INC5-INC8-INC1 (dotted lines), at matching ReτH . The dashed lines represent
the untransformed velocity profiles. The ‘e’ subscript refers to properties at the channel
centerline. The gray line represent equation (18) with cµ = 0.0767.
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a universal parabolic law in the core part of the channel

u+

D − u+

De = −
1

2c∗µ
(1− η)2 , (19)

where uDe is the transformed centerline velocity.
Outer defect profiles obtained with van Driest transformation are given

in figure 9, the other transformations yielding similar results, since density
and viscosity variations in the outer layer are but moderate. Comparison
with incompressible DNS (dotted lines) shows excellent agreement through-
out the outer layer, irrespective of the Reynolds and Mach number. The DNS
data are consistent with the prediction of equation (19) around the channel
centerline, the range of validity of the parabolic fit extending to about half
of the flow domain at sufficiently high Reynolds number. No evident com-
pressibility effects are observed on the parabolic law constant, which in fact
coincides with its incompressible value.

3.2. Reynolds stresses and vorticity fluctuations

Here we discuss the validity of compressibility transformations as applied
to the individual components of the Reynolds stress tensor, for which direct
extension of the van Driest scaling yields

τDij =
ρ

ρw
τij. (20)

The same assumption also subtends the scalings of Huang et al. [10] and
Trettel and Larsson [1]. A different form of scaling was considered by Brun
et al. [23], who applied the same scaling factor used for the mean velocity to
scale the turbulence velocity intensities, thus yielding

τBii =
ρ

ρw

(
y

yB

µw

µ

)2

τii, (21)

for the diagonal Reynolds stress components. The scaling rules for the
Reynolds stresses are summarized in table 3, in the form of the ratio of
the transformed to the untransformed stresses, namely

ϕI =
τI
τ
. (22)

Figure 10 shows the van Driest-transformed Reynold stress components,
compared with the corresponding incompressible distributions. As noticed
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Figure 10: Reynolds stress components transformed according to van Driest [8] (solid
lines) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), and compared with
incompressible DNS at matching ReτD (INC4, INC7, INC10, INC6, respectively, with
dotted lines). The dashed line in panel (c) denotes a logarithmic fit of the data.

22



(a)
100 101 102 103

0

2

4

6

8

10

yH/δv

τ H
ij

τ11

τ33

τ22τ12

(b)
100 101 102 103

0

2

4

6

8

10

yH/δv

τ H
ij

τ11

τ33

τ22τ12

(c)
100 101 102 103

0

2

4

6

8

10

yH/δv

τ H
ij

τ11

τ33

τ22τ12

(d)
100 101 102 103

0

2

4

6

8

10

yH/δv

τ H
ij

τ11

τ33
τ22τ12

Figure 11: Reynolds stress components transformed according to Huang et al. [10]
(squares) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with
incompressible DNS at matching ReτH (INC1, INC5, INC8, INC1, respectively, with dot-
ted lines).
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Figure 12: Reynolds stress components transformed according to Brun et al. [23] (circles)
for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with incompressible
DNS at matching ReτB (INC2, INC6, INC9, INC4, respectively, with dotted lines).
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Figure 13: Vorticity fluctuations in semi-local scaling, ω′

i
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τ (squares) for flow
case CH15A (a) CH15B (b) CH15C (c), CH3 (d), compared with incompressible DNS at
matching ReτH (INC1, INC5, INC8, INC1, respectively, with dotted lines).

25



in previous studies [17, 22], a mismatch between scaled compressible stresses
and incompressible stresses is found in the inner layer, with clear difference
in the amplitude of the streamwise stress and a shift in the position of peaks,
whereas closer agreement is found in the outer layer. It is noteworthy that
the in flow case CH15C (see panel c) a substantial layer with near-logarithmic
variation of the spanwise stress is recovered [41], which is the symptom of
the emergence of effects of scale separation, not attained in previous stud-
ies at lower Reynolds number. Figure 11 shows that Huang’s scaling yields
much better collapse of the compressible and incompressible stresses distribu-
tions, in terms of both the peak amplitude and the off-wall position. In fact,
the shear stress and the wall-normal and spanwise velocity variances are al-
most perfectly matched, whereas differences remain for the amplitude of the
streamwise turbulence intensity peak. Superior accuracy of Huang’s scaling
as compared to van Driest was also observed in previous studies [17, 19], but
to our knowledge this is the first time that a comparison is carried out at pre-
cisely matching Reynolds number. Brun’s scaling is tested for the Reynolds
stress tensor components in figure 12. Note that, although the transforma-
tion (21) was originally meant for the normal stresses only, we also apply it to
the shear stress. The transformed stresses shows reasonably good collapse on
the incompressible simulations in the outer layer for flow cases CH15A-B-C,
but they are less accurate in the near-wall region, similar to what observed
for the van Driest transformation. As the Mach number is increased (panel
d) Brun’s transformation appears to fail both in the inner and in the outer
layer. Interestingly, Brun’s transformation seems to yield good prediction of
the amplitude of the streamwise stress peak, although its positions is clearly
shifted with respect to the ‘correct’ one. Trettel’s transformation for the
Reynolds stresses is not shown here, being identical to Huang’s.

The vorticity fluctuation components are presented in figure 13, scaled
in semi-local units, as defined in equation (10). The success in collapsing
the various distributions is particularly impressive here, except perhaps for
minor differences in the near-wall region for flow case CH3. This observation
probably points to the physical fact that the small scales of fluid motion only
depend on the local mean flow conditions, in terms of density and viscosity.

4. Mean temperature

The distribution of the mean temperature is of great importance in com-
pressible boundary layers, as it obviously allows prediction of the heat trans-
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Figure 14: Temperature-velocity relationship: mean temperature as a function of mean
velocity. In panel (a) flow cases CH15A (black, solid) -CH15B (red, dashed)-CH15C (green,
dash-dotted), in panel (b) flow case CH3 (blue, dash-dot-dot) compared with equation (23)
(solid lines with square symbols) and with (24) (solid lines with triangle symbols), with
r = 0.89.

fer coefficient, but it is also necessary for accurate prediction of the skin fric-
tion coefficient, as an accurate temperature-velocity relation allows straight-
forward application of the inverse of the compressibility transformations of
table 3 to determine the mean velocity profile in untransformed space [39].
A widely used temperature-velocity relationship was derived by Walz [27],

T

Tw

= 1 +
Tr − Tw

Tw

u

ue

− r
γ − 1

2
M2

e

Te

Tw

(
u

ue

)2

, (23)

where Tr = Te

(
1 + γ−1

2
rM2

e

)
is the recovery temperature, r = 0.89 is the

recovery factor, and the subscript e denotes properties at the edge of the
wall layer (the channel centerline in internal flow). Walz obtained equation
(23) from a simplified form of the energy equation [8, 42], based on several
assumptions including neglect of turbulent dissipation and pressure-strain
terms. Pirozzoli et al. [43] found good agreement between equation (23) and
DNS of a M = 2.25 boundary layer over an adiabatic wall. Duan et al. [28]
carried out DNS of a supersonic boundary layer at M = 5 with different wall
temperatures, finding good agreement between equation (23) in adiabatic
wall cases, but differences as the wall heat flux increases. Recently, Zhang
et al. [3] derived a generalized Reynolds analogy by introducing a general
recovery factor, which overcomes the limitations of Walz equation in the
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presence of non-adiabatic walls

T

Tw

= 1 +
Trg − Tw

Tw

u

ue

+
Te − Trg

Tw

(
u

ue

)2

, (24)

where Trg = Te+rgu
2
e/(2Cp), rg = 2Cp(Tw−Te)/u

2
e−2Prqw/(ueτw). Equation

(24) explicitly takes into account the wall heat flux qw, and it coincides with
Walz relation in the case of adiabatic walls.

Figure 14 provides a comparison between the channel flow DNS data
and the predictions of equation (23) and (24), which clearly shows superior
performance of the latter, especially at higher Mach number. It is worth
pointing out that equations (23)-(24) have the same form for external and
internal flows, but in the latter case the centerline values of temperature
and velocity are not known a priori. As a consequence, these traditional
temperature/velocity relations cannot be used to explicitly determine the
friction coefficient, and their engineering relevance in this case is more limited
than in boundary layers.

5. Length scales

We now focus on the evaluation of the typical length scales in the outer
wall layer. As far as theory goes, the basic prediction of the attached eddy
model for incompressible wall layers [44, 45], is that the typical length scales
should increase linearly with the wall distance in the outer layer, which is
consistent with the existence of a logarithmic layer in the mean velocity
profile. A more refined assumption [46] is that the outer-layer length scales
should scale with the local mean shear, as follows

ℓm ∼ uτ

(
du

dy

)
−1

, (25)

which in fact predicts linear variation in the presence of a logarithmic mean
velocity profile. A simple eddy-viscosity ansatz led Pirozzoli [47] to predict
a rather different scaling,

ℓ12 ∼ (uτh)
1/2

(
du

dy

)
−1/2

, (26)

which was shown to apply with greater accuracy than (25) far from the wall.
The scaling (26) can be readily adapted to compressible flow on the token
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Figure 15: Pre-multiplied power spectral densities of u in spanwise direction as a function
of λz/h (a-c-e) and λz/ℓ

∗

12 (b-d-f), for flow cases CH15A (a-b), CH15B (c-d), CH15C
(e-f). Symbols denote different distances from the wall, namely η = 0.2 (circles), η = 0.4
(gradients), η = 0.6 (deltas), η = 0.7 (squares). The dotted lines with gradient symbols
denotes the incompressible spectrum at η = 0.4 at matching ReτH . The inset in panel (f)
shows the spectra of CH15C at six stations in the logarithmic region between y+H = 100
and y+H = 200.
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Figure 16: Pre-multiplied spectral densities in spanwise direction for the streamwise ve-
locity component, as a function of λz/h (a), λz/ℓ12 (b) and λz/ℓ

∗

12 (c) for flow case CH3.
Symbols denote different distances from the wall, namely η = 0.2 (circles), η = 0.4 (gradi-
ents), η = 0.6 (deltas), η = 0.7 (squares). The dotted lines with gradient symbols denotes
the incompressible spectrum at η = 0.4 at matching ReτH .

that the main compressibility effects are included in the variation of the local
friction velocity, with the following result

ℓ∗12 ∼ (u∗

τh)
1/2

(
dũ

dy

)
−1/2

. (27)

In order to gauge the accuracy of the scaling given in equation (27), we will
focus on the spanwise spectral densities of u, defined such that

ũ′′2 =

∫
∞

0

Eu(kz) dkz, (28)

where kz is the Fourier wavenumber in the spanwise direction. This choice is
motivated by the peculiar streaky pattern of the wall layer ‘superstructures’,
which are relatively compact in the spanwise direction, whereas they are
essentially infinite in the streamwise direction, and estimation of the actual
length scale based on streamwise two-point correlations or one-dimensional
spectra is prone to large uncertainties [48]. To account for the effect of
turbulence intensity variation across the wall layer, we further consider the
normalized spectral densities, defined as

Êu(kz) = Eu(kz)/ũ′′2. (29)

Figure 15 shows the spectra of u in pre-multiplied form, as a function of the
spanwise wavelength λz = 2π/kz, normalized with respect to either h or ℓ∗12.
The spectra at different stations, all laying in the outer layer 50/ReτH ≤
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η ≤ 0.7, are shown and compared with the spectra from incompressible
simulations at matching ReτH , at η = 0.4. The outer-scaled spectra all show
a distinct bump shape with peak at λz ≈ h, which is suggestive of eddies
having a typical spanwise size of the order of the channel half-height, and
increasing with the wall distance. When reported in terms of the length scale
(27), spectra at all off-wall locations are found to collapse on another as well
as on the incompressible spectra, with greater scatter in the low-Re flow case
(CH15A), in which the lowest location is at the very lower edge of the outer
layer. It is worth noting that this scaling also applies to the overlap region
(albeit small in this case), as seen in the inset of figure 15e. Compressibility
effects are further scrutinized in figure 16, which pertains to flow case CH3.
In this case, wavelengths are scaled with respect to h (a), ℓ12 (b), and ℓ∗12
(c). Comparison of panels (b) and (c) clearly shows superior accuracy of the
heuristic compressibility correction given in equation (27), as compared to
the baseline ‘incompressible’ scaling of equation (26).

Overall, we believe that the data presented above convincingly support
the validity of the theory developed by Pirozzoli [47], from which more general
conclusions can be drawn. Using the identity u∗

τ = uτ

√
ρw/ρ, and using van

Driest transformation for the mean velocity, which as previously seen is quite
accurate in the outer wall layer, equation (27) becomes

ℓ∗12(y) ∼ (uτh)
1/2

(
duD

dy

)
−1/2

, (30)

which coincides with the conventional length scale (26), applied to the trans-
formed mean velocity profile. Since in the outer layer the transformed mean
shear is the same at the same outer wall distance η, it follows that the typical
spanwise length scales are not affected by compressibility. This is consistent
with the previous figures 15, 16, which showed collapse with incompressible
spectra and nearly identical distributions for flow cases CH15A and CH3
having very similar effective friction Reynolds number, and with previous
experimental and DNS findings [33, 12].

6. Conclusions

We have presented results of a new DNS dataset of compressible channel
flow at unprecedented Reynolds number, which allow to shed some additional
light on the structure of compressible turbulent wall layers. Importantly,
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compressible channel data are directly compared with incompressible chan-
nel DNS data at precisely matching Reynolds number. As far as ‘compress-
ibility transformations’ are concerned, we find classical van Driest scaling to
be inaccurate in representing the full inner-layer velocity profile, especially
in the presence of significant wall heat flux. Later transformations, including
Huang’s and Brun’s yield some improvement, especially because they more
faithfully reproduce the correct behavior in the inner layer. It appears that
a recent transformation by Trettel and Larsson [1] very well reproduces the
behavior of the full mean velocity profile, with the side consequence that fair
comparison of inner-scaled velocity profiles across the Mach number range
should be carried out at matching friction Reynolds number based on yH
as defined in equation (11) + table 3. Huang’s (and consequently Trettel’s)
transformation well performs for all Reynolds stress components, with the
partial exception of the peak of the streamwise turbulent stress, which as
seen in many previous studies [11]-[25] is higher than in the incompressible
case. Reasons for this remaining discrepancy may constitute an interesting
topic for future research. The outer-scaled mean velocity profile is reasonably
well represented by all compressibility transformations, as density and vis-
cosity variations are small. In particular, it is found that a parabolic profile
well represents a substantial fraction of the wall layer, up to 50% at suffi-
ciently high Reynolds number, which is characterized by a single, universal
constant. Study of the mean velocity/temperature relation shows a classical
quadratic dependence, however with different coefficients than the classical
Walz formula, and which explicitly depend of the wall heat flux [3]. Put all
together, the above findings may constitute the basis for the development
of explicit approximations for the friction and heat flux coefficients in com-
pressible turbulent channels, which are currently lacking. Finally, we have
scrutinized the behavior of the length scales associated with the streamwise
velocity field, for which no consensus exists at present. Limiting ourselves
to the spanwise length scales, for which no ambiguity in the interpretation
exists, we find that their dependence on wall distance, Reynolds and Mach
number is well synthesized in formula (27), which is rooted in crude mixing
length arguments. The direct consequence is that, for fixed Reynolds number
and fixed wall distance, the length scales of the typical eddies should not vary
with the Mach number. Further studies, especially at higher Mach number,
would be desirable to further put this proposition to test. Flow statistics are
available at the web page http://newton.dima.uniroma1.it:/supchan/.
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