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Abstract

We carry out direct numerical simulation of compressible square duct flow in the
range of bulk Mach numbers Mb = 0.2 − 3, and up to friction Reynolds number
Reτ = 500. The effects of flow compressibility on the secondary motions are found
to be negligible, with the typical Mach number associated with the cross-stream
flow always less than 0.1. As in the incompressible case, we find that the wall law
for the mean streamwise velocity applies with good approximation with respect to
the nearest wall, upon suitable compressibility transformation. The same conclusion
also applies to a passive scalar field, whereas the mean temperature does not exhibit
inertial layers because of nonuniformity of the aerodynamic heating. We further
find that the same temperature/velocity relation that holds for planar channels is
applicable with good approximation for square ducts, and develop a similar relation
between temperature and passive scalars.

Keywords: Duct flow, Compressible flows, Wall turbulence, Direct Numerical
Simulation

1. Introduction

Internal flows in square ducts are common in many engineering applications in-
volving both incompressible and compressible flows. Typical low-speed applications
involve cooling, water draining and ventilation systems, whereas at high speed the in-
terest is mainly for aircraft air intakes. Square duct flow exhibits secondary motions
in the cross-steam plane. These were first experimentally observed by Nikuradse
[20] and Prandtl [25], who invoked the occurrence of eight counter-rotating vortices
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bringing high-momentum fluid from the duct core towards the corners to explain the
bending of the streamwise velocity isolines. A considerable number of experiments
and numerical simulations have been produced to explain the nature of secondary
motions. In particular the present authors have recently developed [24, 16], a di-
rect numerical simulation (DNS) dataset of square duct flow in the friction Reynolds
number range Re∗

τ = h/δ∗v ≈ 150 − 1000 (where h is the duct half side length,
and δ∗v = νw/u

∗

τ is the viscous length scale based on the mean friction velocity
u∗τ =

√
τ ∗w/ρw), the highest currently available in the literature. Despite their ef-

fect in redistributing the wall shear stress along the duct perimeter, we have shown
that secondary motions do not have large influence on the bulk flow properties, and
the streamwise velocity field can be characterized with good accuracy as resulting
from the superposition of four flat walls in isolation. Furthermore, we showed that
secondary motions contribute approximately 6% of the total friction, and act as a
self-regulating mechanism of turbulence whereby wall shear stress non-uniformities
induced by corners are equalized, and universality of the wall-normal velocity profiles
is established.

Regarding the compressible flow regime experimental and numerical studies are
rather limited. Davis et al. [4] investigated supersonic developing adiabatic flow
at inlet Mach number M = 3.91 and unit Reynolds number Re/m = 1.8 × 106.
They found that secondary motions develop as in the incompressible case and that
the transformed van Driest velocity profiles obey the universal logarithmic wall law.
More recently, Morajkar and Gamba [18] carried out a series of experiments for
supersonic duct flow at M = 2.75, Re/m = 8.9×106 using stereoscopic particle image
velocimetry. Similar to the incompressible case, they found that the velocity isolines
bulge towards the duct corners due to eight counter-rotating cross-stream vortices.
The prediction of secondary motions is notoriously difficult for turbulence models,
especially for those based on the scalar eddy-viscosity hypothesis [1]. Mani et al.
[13] carried out Reynolds averaged Navier-Stokes simulations of supersonic square
duct flow using different eddy viscosity models, showing that satisfactory prediction
of secondary motions is recovered using quadratic constitutive relations. Vázquez
and Métais [30] performed large-eddy simulation (LES) of compressible isothermal
duct flow at bulk Mach number Mb = ub/cw = 0.5 (with ub the bulk velocity and
cw the speed of sound at the wall), both with cooled walls and only one heated
wall. The cooled case showed good agreement with incompressible data available
in the literature, indicating that compressibility effects are negligible at that Mach
number, whereas higher intensity of the secondary motions was observed for the case
with one heated wall. Vane and Lele [29] carried out wall-modeled LES corresponding
to the experimental setup of Davis et al. [4], and found that the development of the
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secondary eddies is strongly affected by the wall shear stress distribution, and that
they can significantly alter the primary, axial flow. This is consistent with the findings
of the present authors, who carried out numerical experiments of incompressible duct
flow in which secondary motions have been artificially suppressed [17] and found that
both the wall shear stress and mean streamwise velocity are affected.

Although available studies of compressible duct flow seem to agree that the struc-
ture of the secondary motions is weakly affected by compressibility, the quantitative
effect of Mach number variations on the flow is not fully understood yet. In partic-
ular, an important practical issue is the definition of the relevant effective Reynolds
number for comparison across Mach numbers, which is intrinsically related to the
subject of compressibility transformations [19]. In plane channel flow, Modesti and
Pirozzoli [15] found that the compressibility transformation derived by Trettel and
Larsson [27, hereafter referred to as TL] yields very good collapse of the wall-scaled
velocity distributions in a wide range of Mach numbers. On the other hand the ap-
plicability and accuracy of compressibility transformations has never been assessed
in the case of multiple walls, and success of TL transformation in plane channel flow
does not automatically guarantee translate to success in the case of duct flow. An-
other topic of interest is the behavior of passive scalars in compressible flow, which is
important to understand mixing processes in turbulent combustion. However, pas-
sive scalars in compressible wall-bounded flows have received little attention so far,
mainly limited to the case of planar channels [7] and pipe flow [8, 9]. Another im-
portant topic in compressible flows is temperature/velocity relations [26]. Whereas
these relations are well established in canonical flows [33], their validity has never
been verified for more complex geometries.

The aim of the present work is three-fold. First, we attempt to extend the com-
pressibility velocity transformations developed for plane channel flow to the case of
multiple walls, through suitable definition of the relevant effective Reynolds number.
Second, we propose a compressibility transformation for passive scalars. Third, we
analyze the temperature field with the main objective of verifying the validity of
temperature/velocity relations. Hence, we perform DNS of isothermal-wall square
duct flow in the range of bulk Mach number Mb = 0.2− 3, up to Re∗

τ = 500.
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Case Mb Reb Re∗

τ Reτ
∗

T Mc Nx Ny Nz ∆x∗ ∆y∗max ∆y∗min Mτ T ∗

τ /Tw ∆t∗avu
∗

τ/h
D02 0.2 4410 152 146 0.26 512 128 128 5.6 3 0.68 0.014 0.001 2290
D15A 1.5 6000 228 141 1.66 512 128 128 8.4 5.4 0.58 0.082 0.05 830
D15B 1.5 14600 507 332 1.62 1024 256 256 9.3 6.0 0.76 0.075 0.045 1036
D3 3 9760 483 145 2.42 1024 256 256 8.9 5.8 0.61 0.12 0.14 213

Table 1: Compressible duct flow dataset. Mb = ub/cw and Reb = 2ρwubh/µw, are the bulk
Mach and Reynolds number respectively; Re∗

τ = h/δ∗v and Reτ
∗

T = y∗
T
(h)/δ∗v are the standard and

transformed friction Reynolds number, as defined in Eqn. (9). Nxi
is the number of mesh points in

the i−th direction, Mτ = u∗
τ
/cw is the friction Mach number, T ∗

τ
is the global friction temperature,

to be defined in equation (5). ∆x is the mesh spacing in the streamwise direction, and ∆ymax,
∆ymin are the maximum and minimum mesh spacings in the cross-stream direction, all given in
global wall units, δ∗

v
= νw/u

∗

τ
. The box dimensions are 6πh× 2h × 2h for all the flow cases. ∆t∗

av

is the effective time averaging interval.

2. Computational setup

We solve the compressible Navier-Stokes equations for a perfect shock-free heat-
conducting gas augmented with the transport equation for a passive scalar φ,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (1a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= −
∂p

∂xi
+
∂σij
∂xj

+Πδi1, (1b)

∂ρs

∂t
+
∂ρujs

∂xj
=

1

T

(
−
∂qj
∂xj

+ σij
∂ui
∂xj

)
, (1c)

∂ρφ

∂t
+
∂ρujφ

∂xj
=

∂

∂xj

(
ρα

∂φ

∂xj

)
+ Φ, (1d)

where ui is the velocity component in the i-th direction, ρ is the fluid density, p is the
thermodynamic pressure, s = cv ln (pρ

−γ) is the entropy per unit mass, γ = cp/cv =
7/5 is the specific heat ratio, σij and qj are, respectively, the viscous stress and the
heat flux components,

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

)
, (2)

qj = −k
∂T

∂xj
. (3)

4



The dependence of the viscosity coefficient on temperature is accounted for through
Sutherland’s law, and the thermal conductivity is defined as k = cpµ/Pr , with
Pr = 0.71. The unsteady, uniform-in-space forcing term Π in equation (1b) is
evaluated at each time step in order to discretely enforce constant mass-flow-rate in
time, hence the bulk Mach number is also constant. The passive scalar diffusivity is
α = µ/ρSc, with Sc the Schmidt number, and the forcing term Φ in equation (1d)
is evaluated at each time step to keep a constant scalar flow rate in time. The equa-
tions are numerically solved using a fourth-order co-located finite-difference solver,
and the convective terms are discretized in such a way that the total kinetic energy
is preserved from convection in the inviscid limit [22]. Viscous terms are expanded
to Laplacian form and discretized using standard central finite-difference approxima-
tions. The use of the entropy equation (1c) in place of the total energy equation is
instrumental to the semi-implicit time advancement, thus avoiding the severe acous-
tic time step limitation in the wall-normal direction [16]. The equations are solved
in a box of size 6πh× 2h× 2h, which was found to yield satisfactory insensitivity of
the flow statistics [24]. Periodicity is enforced in the streamwise direction, whereas
isothermal no-slip boundary conditions are used at the walls, where we also set
φ = 0 [15]. The velocity field is initialized with the incompressible laminar solution
with superposed synthetic perturbations obtained through the digital filtering tech-
nique [12]. Density and temperature are initially uniform, whereas the passive scalar
is initialized as the streamwise velocity field, upon suitable rescaling. Streamwise-
and time-averaged statistics have been collected at equal time intervals, and conver-
gence of the flow statistics has been checked a-posteriori. As observed in previous
DNS studies of duct flow [21, 31, 24], the time integration intervals needed to achieve
statistical convergence are much longer than those typical of plane channel flow; see
table 1. Duct flow statistics inevitably feature asymmetries in the cross-stream plane,
even after long time averaging [24], which are here alleviated through averaging over
the four quadrants. Three supersonic simulations have been carried out at Mb = 1.5,
Re∗

τ = 220 − 500 and at Mb = 3, Re∗

τ = 500, (see table 1). A reference low-speed
simulation at Mb = 0.2, Re∗

τ = 150 has also been carried out (case D02), which
was shown to yield excellent agreement of mean and r.m.s. velocity with reference
incompressible DNS data [24].

The maximum Mach numberMc = ũc/c are also reported. We note thatMc < Mb

for flow case D3, due to the fact that the bulk density is constant for all flow cases
and Mb = ub/ρb, ub = 1/ρb

∫
V
ρudV , where V is the flow volume.

For the forthcoming analysis, the results are reported both in local and global wall
units. Accordingly, we introduce reference friction values for velocity, temperature,
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and passive scalar, namely

u2τ = νw
∂ũ

∂y

∣∣∣∣
w

, u∗τ
2 =

hΠ

2ρ∗w
, (4)

Tτ =
kw

ρwcpuτ

∂T̃

∂y

∣∣∣∣∣
w

, T ∗

τ =
hΨ

2ρ∗wcpu
∗

τ

, (5)

φτ =
αw

uτ

∂φ̃

∂y

∣∣∣∣∣
w

, φ∗

τ =
hΦ

2ρ∗wu
∗

τ

, (6)

(7)

where the w subscript denotes wall values, the ∗ superscript quantities averaged over
the duct perimeter, and Ψ is the viscous dissipation function, defined in equation (13).
For clarity of notation, hereafter x denotes the streamwise direction, and y and z the
cross-stream and wall-normal directions, and u, v and w are the respective velocity
components. Both Reynolds (φ = φ + φ′) and Favre (φ = φ̃ + φ′′, φ̃ = ρφ/ρ)
decompositions will be considered in the following, where the overline symbol denotes
averaging in the streamwise directions and in time. Accordingly, the Reynolds stress
components are denoted as τij = ρũ′′i u

′′

j .

3. Results

3.1. Velocity field

In this section we analyze the structure of the mean velocity field including the
secondary motions, with special reference to establishing the effect of compressibility
on the validity of compressibility transformations for the wall law. The structure
of the secondary motions is hereafter analyzed by introducing a cross-flow stream
function ψ, defined such that at any point over the duct cross section

−ρṽ = ρw
∂ψ

∂z
, ρw̃ = ρw

∂ψ

∂y
, (8)

which satisfies mass conservation in the cross-stream plane. In figure 1 we show ψ in
a quarter of the duct, scaled with respect to ub and h, for the various flow cases of
table 1. All the flow cases exhibit the same typical flow topology with eight counter-
rotating eddies, which act to feed the low-momentum regions created at the corners.
Figure 2 further shows that the cross-stream velocity component, v(y, z) = −w(z, y),
is characterized by a three-lobe structure, as in the incompressible case [24]. The
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Figure 1: Panel (a), contours of the streamfunction ψ in the range −0.002 ≤ ψ/(ubh) ≤ 0.002,
in intervals of 0.0025 (dashed lines denote negative values). Data are reported for flow cases
D02 (top left), D15A (top right), D15B (bottom left), D3 (bottom right). Panel (b), 1D profiles
at y/h = −0.75 (solid) and y/h = −0.5 (dashed) for case D02 (deltas), D15A (circles), D15B
(diamond), D3 (squares).
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Figure 2: Panel (a), contours of the mean cross-stream velocity component ṽ in the range −0.02 ≤
ṽ/ub ≤ 0.02, in intervals of 0.0025 (dashed lines denote negative values). Data are reported for
flow cases D02 (top left), D15A (top right), D15B (bottom left), D3 (bottom right). Panel (b),
1D profiles at y/h = −0.75 (solid) and y/h = −0.5 (dashed) for case D02 (deltas), D15A (circles),
D15B (diamond), D3 (squares).
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cross-stream velocity peaks are found to scale reasonably well with the bulk flow
velocity, regardless of Mach and Reynolds number, with maximum value of about
2% of ub, which is similar to the incompressible case [24].

The mean streamwise velocity field in compressible flows is generally charac-
terized using compressibility transformations. Morkovin [19] first postulated that if
density fluctuations are negligible with respect to local mean density, the direct effect
of compressibility on turbulence reduces to variations of the mean thermodynamic
properties. This led to the well known van Driest transformation [28], which is quite
accurate for adiabatic walls, whereas it is known to fail for isothermal walls [15]. For
the latter wall conditions, Trettel and Larsson [27] have recently derived a compress-
ibility transformation for channel flow which relies on the mean momentum balance
and log-law universality. Pirozzoli et al. [24] showed that in incompressible square
duct flow the streamwise velocity field is mainly influenced by the nearest wall, thus
the wall law applies with reasonable accuracy up to the corner bisector. Based on
this result and on the fact that the secondary motions are not greatly affected by
compressibility, we then introduce the TL transformation for y (the direction normal
to the nearest wall) and u,

yT (y, z) =

∫ y

0

fT (η, z) dη, uT (y, z) =

∫ y

0

gT (η, z)
∂ũ

∂η
(η, z)dη, (9)

where the stretching functions are defined as

fT (y, z) =
∂

∂y

( y

R1/2N

)
, gT (y, z) = RN

∂

∂y

( y

R1/2N

)
, (10)

with N(y, z) = ν/νw, and R(y, z) = ρ/ρw. It is important to note that the stretching
functions fT and gT depend both on y and z (through the mean density and mean
viscosity), and likewise yT and uT . It is also important to note that the transfor-
mation used for the wall distance is actually equivalent to use of the semi-local wall
units introduced by Huang et al. [10].

Figure 3 shows the mean velocity profiles as a function of the wall-normal distance
up to the corner bisector (where mean velocity attains a maximum), in local wall
units. For reference purposes, the mean velocity profiles from DNS of incompressible
pipe flow are also reported [6]. Reasonable collapse of the velocity profiles at various
z is recovered, also including the near-corner region. However, large differences are
found among the different flow cases, especially at higher Mach number. The TL
transformed velocity profiles are shown in figure 4, which now shows much better
collapse of the velocity distributions both with respect to z (up to the corner bisector)
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Figure 3: Mean streamwise velocity profiles along the y direction (up to the corner bisector),
given in local wall units at all z (gray curves), for flow case D02 (a), D15A (b) D15B (c) and D3
(d). Representative stations along the bottom wall are highlighted, namely z∗ = 15 (diamonds),
(z+h)/h = 0.1 (right triangles), (z+h)/h = 0.25 (triangles), (z+h)/h = 0.5 (circles), (z+h)/h = 1
(squares). The dashed lines denote mean profiles from DNS of pipe flow at Reτ = 180 (a-b-d) and
Reτ = 360 (c) from [6], The inset panel (b) shows the mean streamwise velocity in the cross-stream
plane with symbols denoting representative sections.
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Figure 4: Mean streamwise velocity profiles transformed according to equation (9) along the y
direction (up to the corner bisector), given in local wall units at all z (gray curves), for flow case
D02 (Reτ

∗

T
= 146, panel a), D15A (Reτ

∗

T
= 141, panel b) D15B (Reτ

∗

T
= 332, panel c) and D3

(Reτ
∗

T
= 145, panel d). Representative stations along the bottom wall are highlighted, namely

z∗ = 15 (diamonds), (z+ h)/h = 0.1 (right triangles), (z+ h)/h = 0.25 (triangles), (z+ h)/h = 0.5
(circles), (z + h)/h = 1 (squares). The dashed lines denote mean profiles from DNS of pipe flow at
Reτ = 180 (a,b,d) and Reτ = 360 (c) [6]. The inset panel (b) shows the mean streamwise velocity
in the cross-stream plane with symbols denoting representative sections.
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Figure 5: Streamwise turbulent stresses along the y direction (up to the corner bisector), given in
local wall units at all z (gray curves), for flow case D02 (Reτ

∗

T
= 146, panel a), D15A (Reτ

∗

T
= 141,

panel b) D15B (Reτ
∗

T = 332, panel c) and D3 (Reτ
∗

T = 145, panel d). Representative stations along
the bottom wall are highlighted, namely z∗ = 15 (diamonds), (z + h)/h = 0.1 (right triangles),
(z + h)/h = 0.25 (triangles), (z + h)/h = 0.5 (circles), (z + h)/h = 1 (squares). The dashed lines
denote stress profiles from DNS of pipe flow at Reτ = 180 (a,b,d) and Reτ = 360 (c) [6].
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and across different flow cases. This confirms on one hand that the TL transformation
derived for plane channel flow also holds with good approximation for square ducts.
On the other hand, the figure also suggests that for the Mach numbers considered
here close similarity with the velocity distributions in incompressible pipe flow is
recovered for matching values of an equivalent friction Reynolds number, which we
define as

Reτ
∗

T = y∗T (h)/δ
∗

v . (11)

where

y∗T (y) =
1

h

∫ h

0

yT (y, z)dz, (12)

is a stretched wall-normal coordinate averaged along the z direction, which accounts
in the mean for the variation of the local transformed scale yT with z. As in the
incompressible case, duct flow shows close similarity with pipe flow, which is a direct
consequence of the fact that the intensity of the secondary flows is rather small [24].

The streamwise turbulent stress (τ11) normalized by the local wall shear stress is
shown in figure 5, and compared with incompressible pipe flow data. Along most of
the wall, the behaviour is qualitatively similar to canonical pipe flow, with a near-wall
peak at y+ ≈ 12. The scatter among the various z sections appears to be generally
much larger than for the mean velocity field, although it seems to become confined to
the corner vicinity at high enough Re. The streamwise turbulent stress component
exhibits a higher peak in the buffer layer at supersonic Mach number, which is not
accurately captured by normalization with the local wall shear stress. This effect
was observed in previous studies of canonical compressible flows [3, 9, 15], but no
convincing explanation has been provided to date. Good collapse with incompressible
pipe flow is by the way observed for all cases in the outer part of the wall layer.
All other Reynolds stress components (not shown) have similar or higher degree of
universality.
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Figure 6: Contours (panels a, c, e, g), and profiles (panels b, d, f, h) of mean enthalpy budget
terms (equation (13)) in global stretched inner units. Contours are shown in the range −0.025 ≤
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) ≤ 0.025, in intervals of 3 · 10−3, dashed lines denoting negative values. From top
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1D profiles are reported at y∗ = 25 (dashed lines) and y∗ = 75 (solid lines), for all cases (D02,
triangles; D15A, circles; D15B, diamonds; D3, squares).
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Figure 7: Mean temperature profiles along the y direction (up to the corner bisector), given in local
wall units at all z (gray curves), for flow case D02 (Reτ

∗

T
= 146, panel a), D15A (Reτ

∗

T
= 141,

panel b) D15B (Reτ
∗

T = 332, panel c) and D3 (Reτ
∗

T = 145, panel d). Representative stations along
the bottom wall are highlighted, namely z∗ = 15 (diamonds), (z + h)/h = 0.1 (right triangles),
(z + h)/h = 0.25 (triangles), (z + h)/h = 0.5 (circles), (z + h)/h = 1 (squares). The dashed lines
denote mean profiles from DNS of pipe flow at Reτ = 143 (a,b,d) and Reτ = 334 (c) [14].
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Figure 8: Mean temperature profiles along the y direction (up to the corner bisector), given in global
wall units at all z (gray curves), for flow case D02 (Reτ

∗

T
= 146, panel a), D15A (Reτ

∗

T
= 141,

panel b) D15B (Reτ
∗

T = 332, panel c) and D3 (Reτ
∗

T = 145, panel d). Representative stations along
the bottom wall are highlighted, namely z∗ = 15 (diamonds), (z + h)/h = 0.1 (right triangles),
(z + h)/h = 0.25 (triangles), (z + h)/h = 0.5 (circles), (z + h)/h = 1 (squares). The dashed lines
denote mean profiles from DNS of pipe flow at Reτ = 143 (a,b,d) and Reτ = 334 (c) [14].
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Figure 9: Scatter plots of mean temperature versus mean velocity for all points in the duct cross
section for flow cases D15A (a), D15B (b), D3 (c). The subscript e refers to duct centerline values.
The dashed line denotes the generalized temperature/velocity relation of [33] given in equation (14)
and the dash-dotted line denote Walz relation [32].

3.2. Temperature field

The temperature field is herein analyzed starting from the averaged enthalpy
transport equation,

∂ρcpṽT̃

∂y
+
∂ρcpw̃T̃

∂z︸ ︷︷ ︸
C

=
∂

∂y

(
k
∂T̃

∂y

)
+

∂

∂z

(
k
∂T̃

∂z

)

︸ ︷︷ ︸
D

+

+u
∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z︸ ︷︷ ︸
P

+ σij
∂ui
∂xj︸ ︷︷ ︸
Ψ

−
∂ρcpṽ′′T ′′

∂y
−
∂ρcpw̃′′T ′′

∂z︸ ︷︷ ︸
T

,

(13)

where the terms C, D, P , Ψ, and T represent convection, viscous diffusion, pressure
work, viscous dissipation and turbulent transport. The various contributions to the
budget are reported in figure 6, in global stretched inner units, upon normalization of
temperature with respect to the global friction temperature, both in the cross-stream
plane and at selected wall-normal sections. The pressure work term is not reported,
being negligible in all cases [2]. The figure shows that the stretched inner scaling
yields good collapse across different Mach (cases D02, D15A, D3) and Reynolds num-
bers (D15A, D15B). Similar to what was found from the mean momentum balance
equation in the incompressible case [24], we note that mean convection is mainly
relevant at the duct corners, whereas it plays a minor role with respect to the other
terms in the core region. Viscous diffusion and dissipation contribute most to the
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budget, and they are partially balanced by turbulent heat transport in the buffer
layer.

Figure 7 shows the inner-scaled wall-normal temperature profiles up to the corner
bisector, highlighting good agreement between duct flow and supersonic pipe flow
data at matching Mach and Reynolds number [14]. The temperature profiles show
rather good universality with respect to the spanwise direction in the core region,
whereas larger scatter is observed between 10 < y/δv < 100, compared to the mean
velocity profiles, figures 3-4. Nevertheless, temperature does not exhibit any loga-
rithmic layer nor universality with respect to Reynolds and Mach number, unlike
previously observed for the mean velocity field (see figure 4). Corner effects in the
temperature field seem to be more significant than for the mean velocity, yielding
earlier deviation from a common distribution when approaching the wall. This be-
havior may be explained by noting that in the current case of isothermal wall the
energy balance is mainly controlled by aerodynamic heating, which is associated with
viscous dissipation, and which acts as a non-uniform spatial forcing. As shown in the
forthcoming Section, in the case of a passive scalar with spatially uniform forcing a
logarithmic layer does in fact emerge as for the mean velocity. Hence, deviations of
the temperature distributions from a logarithmic behavior are the likely consequence
of non-uniform heating, which implies that regarding the temperature as a passive
scalar may lead to incorrect conclusions, even at low Mach numbers. It is noteworthy
that greater universality of the temperature profiles is achieved in the core region
when the temperature profiles are scaled with the average friction temperature T ∗

τ

defined in equation (5) (see figure 8), which is a hint that the temperature field away
from walls is primarily controlled by the overall aerodynamic heating, whereas local
heating is important near walls.

Knowledge of the temperature distribution in compressible flow is necessary for
the prediction of friction [26]. In particular, based on the distribution of T one can de-
rive the mean velocity distribution through reverse application of the compressibility
transformation introduced in Section 3.1, for which temperature/velocity relation-
ships are needed. The classical temperature/velocity relation by Walz [32] has proven
its accuracy in the case of adiabatic walls [5], whereas it is found to fail in the case
of isothermal walls [15]. Recently, Zhang et al. [33] derived the following generalized
temperature/velocity relation,

T̃

Tw
= 1 +

Trg − Tw
Tw

ũ

ũe
+
T̃e − Trg
Tw

(
ũ

ũe

)2

, (14)

where Trg = T̃e + rgũ
2
e/(2cp) is a generalized recovery temperature, rg = 2cp(Tw −
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T̃e)/ũ
2
e−2Prqw/(ũeτw) is a generalized recovery factor, and ue and Te are the external

values of velocity and temperature, here interpreted as the duct centerline values.
Equation (14) explicitly takes into account the wall heat flux qw, and it reduces to
the Walz relation in the case of adiabatic walls. Figure 9 shows scatter plots of
temperature as a function of velocity for all points in the duct cross section. Nearly
perfect coincidence of the present DNS data with the predictions of equation (14) is
observed. Integration of equation (10) thus allows one to reconstruct the full velocity
field for given values of the bulk Reynolds and Mach numbers.

3.3. Passive scalar field

In this section we study the transport of a passive scalar field governed by equa-
tion (1d) at unit Schmidt number, previously studied in channel flows in the incom-
pressible case [23], and for supersonic Mach number [7]. Exploiting the similarity
between the governing equation of a passive scalar (equation (1d)) and the stream-
wise momentum equation (equation (1b)), we introduce a transformation for the
mean scalar field which mimics the TL transformation (equation (9)), as follows

φT (y, z) =

∫ y

0

gT (η, z)
∂φ̃

∂η
(η, z) dη, (15)

with gT given in equation (10). Figure 10 shows the inner-scaled transformed passive
scalar profiles, compared with the correlations developed by Kader [11] for incom-
pressible pipe flow, which include an inertial layer with logarithmic dependence on
the wall distance. The figure does in fact show reasonable collapse of the φT distri-
butions with respect to z across the different flow cases and with the incompressible
fittings. This findings supports our conjecture that the TL transformation can be ex-
tended to predict the behavior of passive scalars in compressible flow. We recall that
the uniform forcing Φ in the passive scalar equation (1d), equivalent to the uniform
pressure gradient in the momentum equation Π plays a relevant role for the occur-
rence of the logarithmic layer. Indeed, the mean temperature, which is controlled
by a non-uniform spatial forcing, Ψ in (13), does not exhibit a sizable logarithmic
layer, figure 7. Again based on the close similarity between φ and u, we consider a
generalization of equation (14) to relate temperature and passive scalars, namely

T̃

Tw
= 1 +

Trg − Tw
Tw

φ̃

φ̃e

+
T̃e − Trg
Tw

(
φ̃

φ̃e

)2

, (16)
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Figure 10: Mean TL-transformed passive scalar profiles along the y direction (up to the corner
bisector), given in local wall units at all z (gray curves), for flow case D02 (Reτ

∗

T = 146, panel a),
D15A (Reτ

∗

T
= 141, panel b) D15B (Reτ

∗

T
= 332, panel c) and D3 (Reτ

∗

T
= 145, panel d). φτ

is the friction value of the passive scalar, defined in equation (6). Representative stations along
the bottom wall are highlighted, namely z∗ = 15 (diamonds), (z + h)/h = 0.1 (right triangles),
(z + h)/h = 0.25 (triangles), (z + h)/h = 0.5 (circles), (z + h)/h = 1 (squares). The dashed lines
denote fits of experimental incompressible pipe flow data by Kader [11]. Different panels show flow
cases D02 (a), D15A (b), D15B (c), D3 (d).
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Figure 11: Scatter plots of mean temperature versus mean passive scalar for all points in the
duct cross section for flow cases D15A (a), D15B (b), D3 (c). The subscript e refers to duct
centerline values. The dashed line denotes the generalized temperature/passive scalar relation
given in equation (16).

where φ̃e denotes the mean value of the passive scalar at the duct centerline. Figure 11
shows the scatter plots of temperature as a function of the mean passive scalar for
all points in the duct cross section. As for the velocity field, very good collapse of
the supersonic DNS data with the predictions of equation 16 is observed, with the
dependence of T̃ on φ̃ only slightly less universal than its dependence on ũ. We
conclude that integration of equation (15) can be used to reconstruct the full passive
scalar field for assigned values of the bulk Reynolds and Mach numbers.

4. Instantaneous flow field

The general flow organization is scrutinized through visualizations of velocity, pas-
sive scalar and temperature fluctuations in the wall-parallel and cross-stream planes.
Figure 12 shows instantaneous streamwise velocity fluctuations in wall-parallel planes
at a distance y∗T = 15. The velocity fluctuations in the buffer layer are organized
in alternating low/high velocity streaky structures, elongated in the streamwise di-
rection. The figure shows that the azimuthal spacing of the streaks decreases with
the Reynolds number, and in particular we find that the typical spacing is of order
100δ∗v , the same observed in incompressible flows, thus further supporting the use of
the semi-local scaling defined in (11)-(12) as effective wall units in compressible duct
flow.

A complementary picture of the flow field is provided by the flow snapshots in
cross-stream planes, shown in Fig. 13. Whereas at low Reynolds number only eddies
with O(h) size are found, scale separation clearly emerges in flow case D15B, which
also includes near-wall small-scale structures eddies in addition to the core eddies.
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(a)

(b)

(c)

(d)

Figure 12: Instantaneous streamwise velocity fluctuations in wall-parallel plane (y+
T
= 15), for flow

cases D02 (a), D15A (b), D15B (c) and D3 (d). Contours are shown in the range −3 ≤ u′′/
√
τ11D ≤

3, from dark to light shades.
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Figure 13: Instantaneous fluctuations of streamwise velocity (a,d,g,j), passive scalar (b,e,h,k), and
temperature (c,f,i,l) in cross-stream plane, for flow cases D02 (a,b,c), D15A (d,e,f), D15B (g,h,i),

D3 (j,k,l). Contours are shown in the ranges −3 ≤ u′′/
√
τ11D ≤ 3, −3 ≤ φ′′/

√(
φ̃′′2

)
D

≤ 3,

−3 ≤ T ′′/

√(
T̃ ′′2

)
≤ 3, from dark to light shades.
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As in incompressible wall-bounded flows, the passive scalar field shows substantial
correlation with the streamwise velocity field, but it is characterized by sharper inter-
faces between regions with positive and negative fluctuations, owing to the absence
of the pressure gradient term, whose effect is to smoothen the velocity field [23].
Temperature fluctuations also show very similar organization as velocity and passive
scalar fluctuations throughout the Mach number range under study, despite the pre-
viously noted differences between their mean fields. The picture thus emerges that
the qualitative structure of turbulence in duct flow is not substantially changed by
compressibility, and the essential universal features of turbulent wall-bounded flows
are retained.

5. Conclusions

We have carried out DNS of developed compressible flow in a square duct at vari-
ous Mach and Reynolds numbers, with the aim of clarifying the behavior of the mean
velocity, temperature and passive scalar fields. We have found that all the flow cases
exhibit the same typical secondary flow structure including eight counter-rotating
eddies, which act to supply momentum to the duct corners. The cross-stream veloc-
ity peaks are found to scale reasonably well with the bulk flow velocity, regardless
of Mach and Reynolds number, with maximum value of about 2%ub, which is also
consistent with the incompressible case [24]. For the range of Mach and Reynolds
numbers herein considered we find that the TL compressibility transformation for
the mean streamwise velocity developed for plane channel flow [27] also well ap-
plies to square ducts, provided the nearest wall is considered in defining the vertical
coordinate. The DNS data in fact suggest close similarity of the transformed ve-
locity distributions with those in incompressible pipe flow at matching values of an
equivalent friction Reynolds number, defined in equation (11).

Regarding the temperature field, we find that the various contributions to its bud-
get equation scale well when expressed in stretched (y∗T , z∗T ) inner-units, irrespective
of the Mach and Reynolds numbers. Similar to the incompressible case, we find that
mean convection is mainly relevant at the duct corners, whereas it plays a minor role
with respect to the other terms in the bulk region. Viscous diffusion and dissipation
contribute most to the budget, and they are partially balanced by turbulent heat
transport in the buffer layer. As a consequence, mean temperature does not exhibit
any logarithmic layer, nor universality with respect to Reynolds and Mach number
variations. We further show that a generalized form of Waltz’ equation can be used
to relate the mean velocity and passive scalar fields with the mean temperature field.

Exploiting the formal similarity between the governing equation of a passive scalar
with spatially uniform heating and the streamwise momentum equation, we show that

23



the TL transformation can be generalized to achieve universal mean passive scalar
profiles, which attain the classical logarithmic form. Differences between passive
scalars and the temperature fields are then attributable to the strongly non-uniform
distribution of the aerodynamic heating term in the latter case. These results point
to a relatively simple representation of the mean flow properties in compressible duct
flow, which may be exploited in for the development of improved predictive formulas
for friction and heat transfer across the range of Reynolds and Mach numbers, which
will be the subject of further study.
Flow statistics are available at the web page http://newton.dima.uniroma1.it/database
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